# \dontshow{
set.seed(25)
data(dataca20)
d1=dataca20[1:158,]
xpred=model.matrix(calcont~altitude+area,data=dataca20[159:178,])
xobs=model.matrix(calcont~altitude+area,data=dataca20[1:158,])
coordspred=dataca20[159:178,1:2]
######covariance matern: kappa=0.3 prior:reference
res=tsroba(calcont~altitude+area, kappa = 0.3, data=d1,
ini.pars=c(10,390,10),iter=2,burn=0,thin=1)
# }
# \donttest{
set.seed(25)
data(dataca20)
d1=dataca20[1:158,]
xpred=model.matrix(calcont~altitude+area,data=dataca20[159:178,])
xobs=model.matrix(calcont~altitude+area,data=dataca20[1:158,])
coordspred=dataca20[159:178,1:2]
######covariance matern: kappa=0.3 prior:reference
res=tsroba(calcont~altitude+area, kappa = 0.3, data=d1,
ini.pars=c(10,390,10),iter=11000,burn=1000,thin=10)
summary(res)
######covariance matern: kappa=0.3 prior:jef.rul
res1=tsroba(calcont~altitude+area, kappa = 0.3,
data=d1,prior="jef.rul",ini.pars=c(10,390,10),
iter=11000,burn=1000,thin=10)
summary(res1)
######covariance matern: kappa=0.3 prior:jef.ind
res2=tsroba(calcont~altitude+area, kappa = 0.3, data=d1,
prior="jef.ind",ini.pars=c(10,390,10),iter=11000,
burn=1000,thin=10)
summary(res2)
######covariance matern: kappa=0.3 prior:vague
res3=tsroba(calcont~altitude+area, kappa = 0.3,
data=d1,prior="vague",ini.pars=c(10,390,10),,iter=11000,
burn=1000,thin=10)
summary(res3)
####obtaining posterior probabilities
###(just comparing priors with kappa=0.3).
###the real aplication (see Ordonez et.al) consider kappa=0.3,0.5,0.7.
######### Using reference prior ###########
m1=intmT(prior="reference",formula=calcont~altitude+area,
kappa=0.3,cov.model="matern",data=dataca20,maxEval=1000)
######### Using Jeffreys' rule prior ###########
m1j=intmT(prior="jef.rul",formula=calcont~altitude+area,
kappa=0.3,cov.model="matern",data=dataca20,maxEval=1000)
######### Using Jeffreys' independent prior ###########
m1ji=intmT(prior="jef.ind",formula=calcont~altitude+area
,kappa=0.3,cov.model="matern",data=dataca20,maxEval=1000)
m1v=intmT(prior="vague",formula=calcont~altitude+area
,kappa=0.3,cov.model="matern",data=dataca20,maxEval=1000,intphi="default")
tot=m1+m1j+m1ji+m1v
####posterior probabilities#####
p1=m1/tot
pj=m1j/tot
pji=m1ji/tot
pv=m1v/tot
##########MSPE#######################################
pme=tsrobapred(res,xpred=xpred,coordspred=coordspred)
pme1=tsrobapred(res1,xpred=xpred,coordspred=coordspred)
pme2=tsrobapred(res2,xpred=xpred,coordspred=coordspred)
pme3=tsrobapred(res3,xpred=xpred,coordspred=coordspred)
mse=mean((pme-dataca20$calcont[159:178])^2)
mse1=mean((pme1-dataca20$calcont[159:178])^2)
mse2=mean((pme2-dataca20$calcont[159:178])^2)
mse3=mean((pme3-dataca20$calcont[159:178])^2)
# }
Run the code above in your browser using DataLab