Learn R Programming

OBsMD (version 3.0)

summary.OMD: Summary of Optimal OMD Follow-Up Experiments

Description

Reduced printing method for lists of class OMD. It displays the best extra-runs according to the OMD criterion together with the correspondent OMD value.

Usage

# S3 method for OMD
summary(object, digits = 3, verbose=FALSE, ...)

Arguments

object

list of OMD class. Output list of OMD function.

digits

integer. Significant digits to use in the print out.

verbose

logical. If TRUE, the unclass-ed object is displayed.

...

additional arguments passed to summary generic function.

Value

It prints out the marginal factors and models posterior probabilities and the top OMD follow-up experiments with their corresponding OMD statistic.

References

Box, G. E. P and R. D. Meyer (1993). "Finding the Active Factors in Fractionated Screening Experiments". Journal of Quality Technology. Vol. 25. No. 2. pp. 94--105.

Consonni, G. and Deldossi, L. (2015), "Objective Bayesian model discrimination in follow-up experimental designs" DOI 10.1007/s11749-015-0461-3. TEST.

Meyer, R. D., Steinberg, D. M. and Box, G. E. P. (1996). "Follow-Up Designs to Resolve Confounding in Multifactor Experiments (with discussion)". Technometrics, Vol. 38, No. 4, pp. 303--332.

See Also

print.OMD and OMD

Examples

Run this code
# NOT RUN {
library(OBsMD)
data(OBsMD.es5, package="OBsMD")
X <- as.matrix(OBsMD.es5[,1:5])
y <- OBsMD.es5[,6]
es5.OBsProb <- OBsProb(X=X,y=y,blk=0,mFac=5,mInt=2,nTop=32)
nMod <- 26
Xcand <- matrix(c(-1,	-1,	-1, -1,	-1,
1,	-1,	-1,	-1,	-1,
-1,	1,	-1,	-1,	-1,
1,	1,	-1,	-1,	-1,
-1,	-1,	1,	-1,	-1,
1,	-1,	1,	-1,	-1,
-1,	1,	1,	-1,	-1,
1,	1,	1,	-1,	-1,
-1,	-1,	-1,	1,	-1,
1,	-1,	-1,	1,	-1,
-1,	1,	-1,	1,	-1,
1,	1,	-1,	1,	-1,
-1,	-1,	1,	1,	-1,
1,	-1,	1,	1,	-1,
-1,	1,	1,	1,	-1,
1,	1,	1,	1,	-1,
-1,	-1,	-1,	-1,	1,
1,	-1,	-1,	-1,	1,
-1,	1,	-1,	-1,	1,
1,	1,	-1,	-1,	1,
-1,	-1,	1,	-1,	1,
1,	-1,	1,	-1,	1,
-1,	1,	1,	-1,	1,
1,	1,	1,	-1,	1,
-1,	-1,	-1,	1,	1,
1,	-1,	-1,	1,	1,
-1,	1,	-1,	1,	1,
1,	1,	-1,	1,	1,
-1,	-1,	1,	1,	1,
1,	-1,	1,	1,	1,
-1,	1,	1,	1,	1,
1,	1,	1,	1,	1
),nrow=32,ncol=5,dimnames=list(1:32,c("A","B","C","D","E")),byrow=TRUE)
p_omd <- OMD(OBsProb=es5.OBsProb,nFac=5,nBlk=0,nMod=26,
nFoll=4,Xcand=Xcand,mIter=20,nStart=25,startDes=NULL,
top=30)
summary(p_omd)
# }

Run the code above in your browser using DataLab