n_row <- 1000
n_col <- 100
density <- 0.2
num_entries <- n_row * n_col
num_nonzero <- round(num_entries * density)
set.seed(123)
positions <- sample(num_entries, num_nonzero, replace=FALSE)
row_idx <- ((positions - 1) %% n_row) + 1
col_idx <- ((positions - 1) %/% n_row) + 1
values <- runif(num_nonzero, min = 0, max = 1)
sparse_mat <- sparseMatrix(
i = row_idx,
j = col_idx,
x = values,
dims = c(n_row, n_col)
)
# Alpha diversity is computed on column level
## Transpose the sparseMatrix if required with t() from Matrix R package.
result <- OmicFlow::diversity(
x = sparse_mat,
metric = "shannon"
)
Run the code above in your browser using DataLab