fs.stability(X, Y, method, k = 10, p = 0.9, f = NULL, stability.metric = "jaccard", optimize = TRUE, optimize.resample = FALSE, tuning.grid = NULL, k.folds = if (optimize) 10 else NULL, repeats = if (k.folds == "LOO") NULL else if (optimize) 3 else NULL, resolution = if (is.null(tuning.grid) && optimize) 3 else NULL, metric = "Accuracy", model.features = FALSE, allowParallel = FALSE, verbose = "none", ...)
"plsda"
(Partial Least Squares
Discriminant Analysis), "rf"
(Random Forest), "gbm"
(Gradient Boosting Machine), "svm"
(Support Vector Machines),
"glmnet"
(Elastic-net Generalized Linear Model),
and "pam"
(Prediction Analysis of Microarrays)"f = NULL"
"jaccard"
(Jaccard Index/Tanimoto Distance),
"sorensen"
(Dice-Sorensen's Index), "ochiai"
(Ochiai's Index),
"pof"
(Percent of Overlapping Features), "kuncheva"
(Kuncheva's Stability Measures), "spearman"
(Spearman Rank
Correlation), and "canberra"
(Canberra Distance)"optimize = TRUE"
"optimize.resample = FALSE"
- Only
one optimization run, subsequent models use initially determined parameters"tuning.grid = NULL"
lets function
create grid determined by "res"
"LOO"
for leave-one-out cross-validation.
Default "k.folds = 10"
"repeats = 3"
"resolution = 3"
"Accuracy"
(Predication Accuracy), "Kappa"
(Kappa Statistic), and "AUC-ROC"
(Area Under the Curve - Receiver Operator Curve)"model.features = FALSE"
allowParallel = FALSE
"optimize.resample = TRUE"
then returns list of optimized parameters for each bootstrap."optimize.resample = TRUE"
then returns list of optimized parameters for each bootstrap of models
refit to selected features.dat.discr <- create.discr.matrix(
create.corr.matrix(
create.random.matrix(nvar = 50,
nsamp = 100,
st.dev = 1,
perturb = 0.2)),
D = 10
)
vars <- dat.discr$discr.mat
groups <- dat.discr$classes
fits <- fs.stability(vars,
groups,
method = c("plsda", "rf"),
f = 10,
k = 3,
k.folds = 10,
verbose = 'none')
Run the code above in your browser using DataLab