mxSave(model, chkpt.directory = ".", chkpt.prefix = "")
mxOption
: Alternatively, the checkpoint file can be manually loaded as a data.frame in R. Use read.table
with the options header=TRUE, sep="
# Simulate some data
x=rnorm(1000, mean=0, sd=1) y= 0.5*x + rnorm(1000, mean=0, sd=1) tmpFrame <- data.frame(x, y) tmpNames <- names(tmpFrame)
# Create a model that includes an expected covariance matrix, # an expectation function, a fit function, and an observed covariance matrix
data <- mxData(cov(tmpFrame), type="cov", numObs = 1000) expCov <- mxMatrix(type="Symm", nrow=2, ncol=2, values=c(.2,.1,.2), free=TRUE, name="expCov") expFunction <- mxExpectationNormal(covariance="expCov", dimnames=tmpNames) fitFunction <- mxFitFunctionML() testModel <- mxModel(model="testModel", expCov, data, expFunction, fitFunction)
#Use mxRun to optimize the free parameters in the expected covariance matrix modelOut <- mxRun(testModel) modelOut$expCov
# Save the ending state of modelOut in a checkpoint file mxSave(modelOut)
# Restore the saved model from the checkpoint file modelSaved <- mxRestore(testModel) modelSaved$expCov
# Imagine how much time you saved by not having to re-run the # model that took hours or days to run.