Learn R Programming

OpenMx (version 2.3.1)

omxParallelCI: omxParallelCI

Description

Create parallel models for parallel confidence intervals

Usage

omxParallelCI(model, run = TRUE)

Arguments

model
an MxModel with confidence intervals in it
run
whether to run the model or just return the parallelized interval models

Value

  • an MxModel object

Examples

Run this code
require(OpenMx)
data(demoOneFactor)
manifests <- names(demoOneFactor)
latents <- c("G")
factorModel <- mxModel("One Factor",
                      type="RAM",
                      manifestVars=manifests,
                      latentVars=latents,
                      mxPath(from=latents, to=manifests),
                      mxPath(from=manifests, arrows=2),
                      mxPath(from=latents, arrows=2, free=FALSE, values=1.0),
                      mxData(observed=cov(demoOneFactor), type="cov",
                      numObs=500),
     # add confidence intervals for free params in A and S matrices
                      mxCI(c('A', 'S')))
factorRun <- mxRun(factorModel)
factorCI <- omxParallelCI(factorRun) # Run CIs in parallel

Run the code above in your browser using DataLab