Learn R Programming

OpenMx (version 2.6.9)

omxParallelCI: omxParallelCI

Description

Create parallel models for parallel confidence intervals

Usage

omxParallelCI(model, run = TRUE)

Arguments

model
an MxModel with confidence intervals in it
run
whether to run the model or just return the parallelized interval models

Value

an MxModel object

Examples

Run this code
require(OpenMx)
data(demoOneFactor)
manifests <- names(demoOneFactor)
latents <- c("G")
factorModel <- mxModel("One Factor", 
                      type="RAM",
                      manifestVars=manifests, 
                      latentVars=latents,
                      mxPath(from=latents, to=manifests),
                      mxPath(from=manifests, arrows=2),
                      mxPath(from=latents, arrows=2, free=FALSE, values=1.0),
                      mxData(observed=cov(demoOneFactor), type="cov",
                      numObs=500),
     # add confidence intervals for free params in A and S matrices
                      mxCI(c('A', 'S')))
factorRun <- mxRun(factorModel)
factorCI <- omxParallelCI(factorRun) # Run CIs in parallel

Run the code above in your browser using DataLab