## Not run:
#
# # default is euclidean distance and ward clustering
# bertinCluster(bell2010)
#
# ### applying different distance measures and cluster methods
#
# # euclidean distance and single linkage clustering
# bertinCluster(bell2010, cmethod="single")
# # manhattan distance and single linkage clustering
# bertinCluster(bell2010, dmethod="manhattan", cm="single")
# # minkowksi distance with power of 2 = euclidean distance
# bertinCluster(bell2010, dm="mink", p=2)
#
# ### using different methods for constructs and elements
#
# # ward clustering for constructs, single linkage for elements
# bertinCluster(bell2010, cmethod=c("ward", "single"))
# # euclidean distance measure for constructs, manhatten
# # distance for elements
# bertinCluster(bell2010, dmethod=c("euclidean", "man"))
# # minkowski metric with different powers for constructs and elements
# bertinCluster(bell2010, dmethod="mink", p=c(2,1)))
#
# ### clustering either constructs or elements only
# # euclidean distance and ward clustering for constructs no
# # clustering for elements
# bertinCluster(bell2010, cmethod=c("ward", NA))
# # euclidean distance and single linkage clustering for elements
# # no clustering for constructs
# bertinCluster(bell2010, cm=c(NA, "single"))
#
# ### changing the appearance
# # different dendrogram type
# bertinCluster(bell2010, type="rectangle")
# # no axis drawn for dendrogram
# bertinCluster(bell2010, draw.axis=F)
#
# ### passing on arguments to bertin function via ...
# # grey cell borders in bertin display
# bertinCluster(bell2010, border="grey")
# # omit printing of grid scores, i.e. colors only
# bertinCluster(bell2010, showvalues=FALSE)
#
# ### changing the layout
# # making the vertical dendrogram bigger
# bertinCluster(bell2010, xsegs=c(0, .2, .5, .7, 1))
# # making the horizontal dendrogram bigger
# bertinCluster(bell2010, ysegs=c(0, .3, .8, 1))
# ## End(Not run)
Run the code above in your browser using DataLab