## Example 1: randomly generated 2-variable response surface data
X<-cbind(runif(100,-2,2),runif(100,-2,2))
y<-as.matrix(72-11.78*X[,1]+0.74*X[,2]-7.25*X[,1]^2-7.55*X[,2]^2-4.85*X[,1]*X[,2]+
rnorm(100,0,8))
## Find a 95 percent confidence region for the maximum of a quadratic polynomial
fitted to these data
out<-OptRegionQuad(X=X,y=y,nosim=200,LB=c(-2,-2),UB=c(2,2), xlab="X1",ylab="X2",
outputPDFFile="CR_plot.pdf")
## Example 2: a mixture-amount experiment in two components (Drug dataset) with
non-normal data. Note triangular experimental region. Resulting 95p confidence
region is pushed against the constraint and results in a "thin line"
out<-OptRegionQuad(X=Drug[,1:2],y=Drug[,3],nosim=500,LB=c(0,0),UB=c(0.08,11),
xlab="Component 1 (mg.)",ylab="Component 2 (mg.)",triangularRegion = TRUE,
vertex1 = c(0.02,11),vertex2 = c(0.08,1.8),outputPDFFile="Mixture_plot.pdf")Run the code above in your browser using DataLab