# We will compute a C-efficient (regularized c-optimal) design
# for estimating the mean response in x=1 for a quadratic regression
# using and algorithm for A-optimality.
Fx <- Fx_cube(~x1 + I(x1^2), n.levels=101)
Fx.trans <- Fx_CtoA(Fx, h=c(1, 1, 1))
w <- od_REX(Fx.trans, crit="A")$w.best
od_print(Fx, w, h=c(1, 1, 1))
# Compare the design to the (non-regularized) c-optimal design
w.crisp <- od_REX(Fx, crit="c", h=c(1, 1, 1))$w.best
od_print(Fx, w.crisp, h=c(1, 1, 1))
# The c-efficiency of the C-optimal design is about 0.68
# The D-efficiency of the c-optimal design is 0
# The D-efficiency of the C-optimal design is a very decent
optcrit(Fx, w) / od_REX(Fx)$Phi.best
Run the code above in your browser using DataLab