This function estimates different nuisance parameters using the honest random forest implementation of the 'grf' package
NuPa_honest_forest(
NuPa = c("Y.hat", "Y.hat.d", "Y.hat.z", "D.hat", "D.hat.z", "Z.hat"),
X,
Y = NULL,
D = NULL,
Z = NULL,
n_cf_folds = 5,
n_reps = 1,
cluster = NULL,
progress = FALSE,
...
)
List of two lists.
predictions
contains the requested nuisance parameters
smoothers
contains the smoother matrices of requested outcome nuisance parameters
cf_mat
Array of dimension n_reps x N x n_cf_folds storing indicators representing the folds used in estimation.
String vector specifying the nuisance parameters to be estimated.
Currently supported: c("Y.hat","Y.hat.d","Y.hat.z","D.hat","D.hat.z","Z.hat")
Covariate matrix with N rows and p columns.
Optional numeric vector containing the outcome variable.
Optional binary treatment variable.
Optional binary instrumental variable.
Number of cross-fitting folds. Default is 5.
Number of repetitions of cross-fitting. Default is 1.
Optional vector of cluster variable if cross-fitting should account for clusters.
If TRUE, progress of nuisance parameter estimation reported.
Options passed to the regression_forest
.
Wager, S., & Athey, S. (2018). Estimation and inference of heterogeneous treatment effects using random forests. Journal of the American Statistical Association, 113(523), 1228-1242.