# NOT RUN {
c1 <- O3prep(stackloss, k1=2, method=c("HDo", "BAC"), tolHDo=0.025, tolBAC=0.01)
c2 <- O3plotM(c1)
c2$nOut
c2$gpcp
c2$gO3
# }
# NOT RUN {
b1 <- O3prep(stackloss, method=c("HDo", "BAC", "DDC"), tolHDo=0.025, tolBAC=0.01, tolDDC=0.05)
b2 <- O3plotM(b1)
b2$nOut
b2$gpcp
b2$gO3
b2$outsTable
# }
# NOT RUN {
# It is advisable with large datasets to check the number of outliers identified (nOut)
# before drawing graphics. Occasionally methods find very many outliers.
# }
# NOT RUN {
data(diamonds, package="ggplot2")
data <- diamonds[1:5000, c(1, 5, 6, 8:10)]
pPa <- O3prep(data, method=c("PCS", "adjOut"), tolPCS=0.01, toladj=0.01, boxplotLimits=10)
pPx <- O3plotM(pPa)
pPx$nOut
# }
Run the code above in your browser using DataLab