"plot"(x,data,true_f = NULL, plot = c("A","f","true_f"), plot_bin = TRUE, line = FALSE, confidence = TRUE, high_deg = NULL, shade_point = 0.5, shade_interval = 0.5, max_A = NULL, min_A = NULL, f_min = NULL, f_max = NULL, plot_true_degree = FALSE, label_x = NULL, label_y = NULL, col_interval = "lightsteelblue", col_point = "black",...)
2. Pham, T., Sheridan, P. & Shimodaira, H. (2015). PAFit: A Statistical Method for Measuring Preferential Attachment in Temporal Complex Networks. PLoS ONE 10(9): e0137796. doi:10.1371/journal.pone.0137796 (http://dx.doi.org/10.1371/journal.pone.0137796).
3. Pham, T., Sheridan, P. & Shimodaira, H. (2016). Joint Estimation of Preferential Attachment and Node Fitness in Growing Complex Networks. Scientific Reports 6, Article number: 32558. doi:10.1038/srep32558 (www.nature.com/articles/srep32558).
library("PAFit")
data <- GenerateNet(N = 100,m = 1,mode = 1, alpha = 1, shape = 5, rate = 5)
stats <- GetStatistics(data$graph,deg_thresh = 1, Binning = TRUE, G = 50)
result <- PAFit(stats,stop_cond = 10^-3)
#plot A
plot(result,stats,plot = "A")
#plot f
plot(result,stats,plot = "f")
#plot true_f
plot(result,stats,data$fitness, plot = "true_f")
Run the code above in your browser using DataLab