"plot"(x, net_stat , true_f = NULL , plot = "A" , plot_bin = TRUE , line = FALSE , confidence = TRUE , high_deg = NULL , shade_point = 0.5 , shade_interval = 0.5 , col_interval = "lightsteelblue" , col_point = "black" , label_x = NULL , label_y = NULL , max_A = NULL , min_A = NULL , f_min = NULL , f_max = NULL , plot_true_degree = FALSE , ...)
2. Pham, T., Sheridan, P. & Shimodaira, H. (2015). PAFit: A Statistical Method for Measuring Preferential Attachment in Temporal Complex Networks. PLoS ONE 10(9): e0137796. doi:10.1371/journal.pone.0137796 (http://dx.doi.org/10.1371/journal.pone.0137796).
3. Pham, T., Sheridan, P. & Shimodaira, H. (2016). Joint Estimation of Preferential Attachment and Node Fitness in Growing Complex Networks. Scientific Reports 6, Article number: 32558. doi:10.1038/srep32558 (www.nature.com/articles/srep32558).
library("PAFit")
net <- GenerateNet(N = 50 , m = 1 , mode = 1 , alpha = 1 , shape = 10 , rate = 10)
net_stats <- GetStatistics(net$graph)
result <- PAFit(net_stats)
#plot A
plot(result , net_stats , plot = "A")
#plot f
plot(result , net_stats , plot = "f")
#plot true_f
plot(result , net_stats , net$fitness, plot = "true_f")
Run the code above in your browser using DataLab