r and s in PAFit.performCV(cv_data,
r = 10^c(-2,-1,0,1,2),
s = 10^c(-1,1,2,3,4),
stop_cond = 10^-7,
only_PAFit = TRUE,
silent = FALSE,
only_loglinear = FALSE,
...)CV_Data.c(0.01,0.1,1,10,100).
c(0.1,1,10,100,1000,10000).
10^-7.
TRUE then only perform the CV for PAFit full model. Default is TRUE.
TRUE then the progress is not printed out. Default is FALSE.
TRUE then only perform the CV assuming the linear functional form \(A_k = k^\alpha\). In this case, the search is one-dimensional, since we only have to find s (given s, \(\alpha\) and node fitnesses can be estimated). Default is FALSE.
debug = TRUE) to pass onto the PAFit function.
library("PAFit")
net <- GenerateNet(N = 100 , m = 5 , mode = 1 , alpha = 0.5 , shape = 10, rate = 10)
data_cv <- CreateDataCV(net$graph) # create CV data
cv_result <- performCV(data_cv , r = c(0.1,1) , s = c(10) , only_PAFit = TRUE , stop_cond = 10^-2)
print(cv_result)
Run the code above in your browser using DataLab