Predictor-Assisted Graphical Models under Error-in-Variables
Description
We consider the network structure detection for variables Y with auxiliary variables X accommodated, which are possibly subject to measurement error. The following three functions are designed to address various structures by different methods : one is NP_Graph() that is used for handling the nonlinear relationship between the responses and the covariates, another is Joint_Gaussian() that is used for correction in linear regression models via the Gaussian maximum likelihood, and the other Cond_Gaussian() is for linear regression models via conditional likelihood function.