This function allows you to identify gene/feature trajectory over longitudinal points. The function uses mfuzz package (for more information refer to https://www.bioconductor.org/packages/release/bioc/html/Mfuzz.html)
longitudinalmfuzz(
data_object,
group_column = "group",
timeColumn = "Time",
timeOrder = NULL,
donorColumn = "PTID",
baseline_timepoint = NULL,
featurelist = NULL,
group_oi = NULL,
mfuzz_thres = 0.25,
mfuzz_min.std = 0,
max_cluster = NULL,
delta = 0.5,
plotsize = 10,
cl = 2,
fileName = NULL,
filePATH = NULL
)longitudinal trajectory dataframe
Input PALMO S4 object. It contains annotation information and expression data from Bulk or single cell data.
User-defined group name like 'group','celltype'
User-defined time column name like 'Time'
(Optional) User-defined order of time variable like ('D1','D2','D3')
User-defined donor/participant column name like 'PTID'
(Optional) If baseline donors known (like 'PTID1')
(Optional) User-defined genes/features of interest
User-defined groups to consider for example from celltypes select few
mfuzz:thres threshold for excluding genes
mfuzz:min.std threshold for minimum standard
deviation
Number of clusters to explore (Default 2^n)
mfuzz:delta threshold for minimum standard deviation
Size of plot width and height. Default 10 (in).
Number of clusters. Use nCores-1 to run parallel. Default 2
User-defined file name, Default outputFile
User-defined output directory PATH Default, current directory
if (FALSE) {
longitudinalmfuzz(data_object=palmo_obj, group_column='group',
timeColumn='Time', donorColumn='PTID')
}
Run the code above in your browser using DataLab