Learn R Programming

PAMA (version 0.1.1)

PAMA.PL: This function implements Bayesian inference of PAMA model with partial lists.

Description

This function implements Bayesian inference of PAMA model with partial lists.

Usage

PAMA.PL(datfile, PLdatfile, nRe, iter)

Arguments

datfile

A matrix or dataframe. This is the data where our algorithm will work on. Each colomn denotes a ranker's ranking. The data should be in entity-based format.

PLdatfile

A matrix or dataframe. It contains all the partial lists. Each colomn denotes a partial list.

nRe

A number. Number of relevant entities.

iter

A number. Numner of iterations of MCMC. Defaulted as 1000.

Value

List. It contains Bayesian posterior samples of all the parameters and log-likelihood.

  1. I.mat: posterior samples of I

  2. phi.mat: posterior samples of phi

  3. smlgamma.mat: posterior samples of gamma

  4. l.mat: posterior samples of log-likelihood.

Details

The partial lists are handle by Data Augmentation strategy.

Examples

Run this code
# NOT RUN {
a=NBANFL()
PAMA.PL(a$NBA,a$NBAPL,nRe=10,iter=1)
# }
# NOT RUN {
PAMA.PL(a$NBA,a$NBAPL,nRe=10,iter=100)
# }
# NOT RUN {
# }

Run the code above in your browser using DataLab