Learn R Programming

PCAN (version 1.0.2)

hpGeneHeatmap: HP to Gene heatmap

Description

This function draw a heatmap corresponding to the result of the pathway consensus method. For each gene of the pathway under focus and each HP of interest it shows the best score.

Usage

hpGeneHeatmap(hpGeneListRes, genesOfInterest = NULL, geneLabels = NULL, hpLabels = NULL, clustByGene = TRUE, clustByHp = TRUE, palFun = colorRampPalette(c("white", "red")), goiCol = "blue", ...)

Arguments

hpGeneListRes
the result of the hpGeneListComp function.
genesOfInterest
a list of gene to highlight.
geneLabels
a named vector of gene labels (all the genes id found in hpGeneListRes should be in names(geneLabels)).
hpLabels
a named vector of HP labels (all the HP id found in hpGeneListRes should be in names(hpLabels)).
clustByGene
should the heatmap be clustered according to genes (default: TRUE).
clustByHp
should the heatmap be clustered according to HP (default: TRUE).
palFun
the palette function for the heatmap.
goiCol
the color used to highlight genes of interest.
...
parameters for the codeheatmap function

Value

A list of 2 matrix (invisible return):
bmValues
For each gene and each HP of interest the best match value.
bestMatches
The gene associated HP best matching the HP of interest.

See Also

hpGeneListComp, hpSetCompBestMatch

Examples

Run this code
data(geneByHp, hp_descendants, package="PCAN")
data(hp_ancestors, hpDef, package="PCAN")
data(traitDef, geneDef, package="PCAN")
data(hpByTrait, package="PCAN")
geneByHp <- unstack(geneByHp, entrez~hp)

###########################################
## Compute information content of each HP according to associated genes
ic <- computeHpIC(geneByHp, hp_descendants)

###########################################
## Use case: comparing a gene and a disease
omim <- "612285"
traitDef[which(traitDef$id==omim),]
entrez <- "57545"
geneDef[which(geneDef$entrez==entrez),]
## Get HP terms associated to the disease
hpOfInterest <- hpByTrait$hp[which(hpByTrait$id==omim)]
## Get HP terms associated to the gene
hpByGene <- unstack(stack(geneByHp), ind~values)
geneHps <- hpByGene[[entrez]]
## HP Comparison
hpGeneResnik <- compareHPSets(
    hpSet1=names(ic), hpSet2=hpOfInterest,
    IC=ic,
    ancestors=hp_ancestors,
    method="Resnik",
    BPPARAM=SerialParam()
)
hpMatByGene <- lapply(
    hpByGene,
    function(x){
        hpGeneResnik[x, , drop=FALSE]
    }
)
resnSss <- unlist(lapply(
    hpMatByGene,
    hpSetCompSummary,
    method="bma", direction="symSim"
))
candScore <- resnSss[entrez]

###########################################
## The pathway consensus approach
## What about genes belonging to the same pathways as the candidate
data(rPath, hsEntrezByRPath, package="PCAN")
candPath <- names(hsEntrezByRPath)[which(unlist(lapply(
    hsEntrezByRPath,
    function(x) entrez %in% x
)))]
rPath[which(rPath$Pathway %in% candPath),]
rPathRes <- hpGeneListComp(
    geneList=hsEntrezByRPath[[candPath]],
    ssMatByGene = hpMatByGene,
    geneSSScore = resnSss
)
hist(
    resnSss,
    breaks=100, col="grey",
    ylim=c(0,5),
    xlab=expression(Sim[sym]),
    ylab="Density",
    main=paste(
        "Distribution of symmetric semantic similarity scores for all the",
        length(resnSss), "genes"
    ),
    probability=TRUE
)
toAdd <- hist(
    rPathRes$scores,
    breaks=100,
    plot=FALSE
)
for(i in 1:length(toAdd$density)){
    polygon(
        x=toAdd$breaks[c(i, i+1, i+1, i)],
        y=c(0, 0, rep(toAdd$density[i], 2)),
        col="#BE000040",
        border="#800000FF"
    )
}
legend(
    "topright",
    paste0(
        "Genes belonging to the ", candPath," pathway:\n'",
        rPath[which(rPath$Pathway %in% candPath),"Pathway_name"],
        "'\nand with a symmetric semantic similarity score (",
        sum(!is.na(rPathRes$scores)),
        "/",
        length(rPathRes$scores),
        ")\n",
        "p-value: ", signif(rPathRes$p.value, 2)
    ),
    pch=15,
    col="#BE000040",
    bty="n",
    cex=0.6
)
## Assessing the symmetric semantic similarity for each gene in the pathway
pathSss <- rPathRes$scores[which(!is.na(rPathRes$scores))]
names(pathSss) <- geneDef[match(names(pathSss), geneDef$entrez), "symbol"]
opar <- par(mar=c(7.1, 4.1, 4.1, 2.1))
barplot(
    sort(pathSss),
    las=2,
    ylab=expression(Sim[sym]),
    main=rPath[which(rPath$Pathway %in% candPath),"Pathway_name"]
)
p <- c(0.25, 0.5, 0.75, 0.95)
abline(
    h=quantile(resnSss, probs=p),
    col="#BE0000",
    lty=c(2, 1, 2, 2),
    lwd=c(2, 2, 2, 1)
)
text(
    rep(0,4),
    quantile(resnSss, probs=p),
    p,
    pos=3,
    offset=0,
    col="#BE0000",
    cex=0.6
)
legend(
    "topleft",
    paste0(
        "Quantiles of the distribution of symmetric semantic similarity\n",
        "scores for all the genes."
    ),
    lty=1,
    col="#BE0000",
    cex=0.6
)
par(opar)

## A heatmap showing the best HP match for each gene in the pathway
geneLabels <- geneDef$symbol[which(!duplicated(geneDef$entrez))]
names(geneLabels) <- geneDef$entrez[which(!duplicated(geneDef$entrez))]
hpLabels <- hpDef$name
names(hpLabels) <- hpDef$id
hpGeneHeatmap(
    rPathRes,
    genesOfInterest=entrez,
    geneLabels=geneLabels,
    hpLabels=hpLabels,
    clustByGene=TRUE,
    clustByHp=TRUE,
    palFun=colorRampPalette(c("white", "red")),
    goiCol="blue",
    main=rPath[which(rPath$Pathway %in% candPath),"Pathway_name"]
)

###########################################
## What about genes interacting with the candidate (including itself)
data(hqStrNw, package="PCAN")
neighbors <- unique(c(
    hqStrNw$gene1[which(hqStrNw$gene2==entrez)],
    hqStrNw$gene2[which(hqStrNw$gene1==entrez)],
    entrez
))
neighRes <- hpGeneListComp(
    geneList=neighbors,
    ssMatByGene = hpMatByGene,
    geneSSScore = resnSss
)
hist(
    resnSss,
    breaks=100, col="grey",
    ylim=c(0,10),
    xlab=expression(Sim[sym]),
    ylab="Density",
    main=paste(
        "Distribution of symmetric semantic similarity scores for all the",
        length(resnSss), "genes"
    ),
    probability=TRUE
)
toAdd <- hist(
    neighRes$scores,
    breaks=100,
    plot=FALSE
)
for(i in 1:length(toAdd$density)){
    polygon(
        x=toAdd$breaks[c(i, i+1, i+1, i)],
        y=c(0, 0, rep(toAdd$density[i], 2)),
        col="#BE000040",
        border="#800000FF"
    )
}
legend(
    "topright",
    paste0(
        "Genes interacting with ",
        geneDef[which(geneDef$entrez==entrez),"symbol"],
        " (", entrez, ")",
        "\nand with a symmetric semantic similarity score (",
        sum(!is.na(neighRes$scores)),
        "/",
        length(neighRes$scores),
        ")\n",
        "p-value: ", signif(neighRes$p.value, 2)
    ),
    pch=15,
    col="#BE000040",
    bty="n",
    cex=0.6
)

## Assessing the symmetric semantic similarity score for each interacting gene
neighSss <- neighRes$scores[which(!is.na(neighRes$scores))]
names(neighSss) <- geneDef[match(names(neighSss), geneDef$entrez), "symbol"]
opar <- par(mar=c(7.1, 4.1, 4.1, 2.1))
barplot(
    sort(neighSss),
    las=2,
    ylab=expression(Sim[sym]),
    main=paste0(
        "Genes interacting with ",
        geneDef[which(geneDef$entrez==entrez),"symbol"],
        " (", entrez, ")"
    )
)
p <- c(0.25, 0.5, 0.75, 0.95)
abline(
    h=quantile(resnSss, probs=p),
    col="#BE0000",
    lty=c(2, 1, 2, 2),
    lwd=c(2, 2, 2, 1)
)
text(
    rep(0,4),
    quantile(resnSss, probs=p),
    p,
    pos=3,
    offset=0,
    col="#BE0000",
    cex=0.6
)
legend(
    "topleft",
    paste0(
        "Quantiles of the distribution of symmetric semantic similarity\n",
        "scores for all the genes."
    ),
    lty=1,
    col="#BE0000",
    cex=0.6
)
par(opar)

## A heatmap showing the best HP match for each neighbor gene
hpGeneHeatmap(
    neighRes,
    genesOfInterest=entrez,
    geneLabels=geneLabels,
    hpLabels=hpLabels,
    clustByGene=TRUE,
    clustByHp=TRUE,
    palFun=colorRampPalette(c("white", "red")),
    goiCol="blue",
    main=rPath[which(rPath$Pathway %in% candPath),"Pathway_name"]
)

Run the code above in your browser using DataLab