#MFAmix:
data(INSEE)
class.var<-c(1,1,1,1,1,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,
5,5,1,1,1,1,6,7,7,7,7,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,8,8,1)
nom.groupes<-c("Log_Services","Population","Emplois","Condit_Famil",
"Educ","Revenu","Environnement","Secu_et_Soins")
res<-MFAmix(data=INSEE,group=class.var,name.group=nom.groupes,ndim=5,graph=FALSE)
summary(res)
res$eig
res$group$Lg
#Eigenvalues of the separate analyses
res$recap.eig.separate
#Individuals map on dim 1-2 colored by MedGen
plot(res,choice="ind",invisible="quali",habillage="MedGen_R",
cex=0.6,title="Individuals colored by the Qualitative variable MedGen_R")
#Categories maps on dim 2-3
plot(res,choice="ind",invisible="ind",cex=0.6,axes=c(2,3))
#Partial axes on dim 1-2
plot(res,choice="axes",invisible="ind",cex=0.6,habillage="group",
col.hab=c("green","blue","red","skyblue1","orange","grey","purple","brown"))
#Groups representation on dim 1-2
plot(res,choice="group",cex=0.6,habillage="group")
#Correlation circle on dim 1-2
plot(res,choice="var",cex=0.6,habillage="group")
#Squared loadings on dim 1-2
plot(res,choice="loadings",cex=0.6,habillage="group")
#Some partial individuals
plot(res,choice="ind",invisible="quali",habillage="group",partial=c("33119","17410"),cex=0.6)
#All partial individuals
plot(res,choice="ind",invisible="quali",habillage="group",partial="all",cex=0.6)
Run the code above in your browser using DataLab