library(PCGII)
library(corpcor)
library(glmnet)
library(igraph)
library(Matrix)
library(mvtnorm)
# Simulating data
set.seed(1234567)
n=50 # sample size
p=30 # number of nodes
Omega=make_random_precision_mat(eta=.01, p=p)
# population covariance matrix, which is used to generate data
Sigma=solve(Omega)
# simulate expression data
X = rmvnorm(n = n, sigma = Sigma)
lam=2*sqrt(log(p)/n) ## fixed lambda
CLEVEL_out=clevel(df=X, lambda = lam)
inference_out=inference(list=CLEVEL_out)
diag(inference_out)=0
net=graph_from_adjacency_matrix(inference_out, mode = "undirected")
plot(net,
vertex.size=4,
vertex.label.dist=0.5,
vertex.color="red",
edge.arrow.size=0.5,
layout=layout_in_circle(net))
Run the code above in your browser using DataLab