# NOT RUN {
# load data
data(survivalData)
data(PCGroups)
x <- survivalData$Exp
y <- survivalData$survData
PC.Human <- getPCGroups(Groups = PCGroups, Organism = "Human",
Type = "EntrezID")
set.seed(20150122)
idx.train <- sample(nrow(x), round(nrow(x)*2/3))
x.train <- x[idx.train,]
y.train <- y[idx.train,]
x.test <- x[-idx.train,]
y.test <- y[-idx.train,]
# fit cv.PCLasso model
cv.fit1 <- cv.PCLasso(x = x.train,
y = y.train,
group = PC.Human,
nfolds = 5)
# predict risk scores of samples in x.test
s <- predict(object = cv.fit1, x = x.test, type="link",
lambda=cv.fit1$cv.fit$lambda.min)
# Nonzero coefficients
sel.groups <- predict(object = cv.fit1, type="groups",
lambda = cv.fit1$cv.fit$lambda.min)
sel.ngroups <- predict(object = cv.fit1, type="ngroups",
lambda = cv.fit1$cv.fit$lambda.min)
sel.vars.unique <- predict(object = cv.fit1, type="vars.unique",
lambda = cv.fit1$cv.fit$lambda.min)
sel.nvars.unique <- predict(object = cv.fit1, type="nvars.unique",
lambda = cv.fit1$cv.fit$lambda.min)
sel.vars <- predict(object = cv.fit1, type="vars",
lambda=cv.fit1$cv.fit$lambda.min)
sel.nvars <- predict(object = cv.fit1, type="nvars",
lambda=cv.fit1$cv.fit$lambda.min)
# }
Run the code above in your browser using DataLab