# NOT RUN {
# load data
data(classData)
data(PCGroups)
x = classData$Exp
y = classData$Label
PC.Human <- getPCGroups(Groups = PCGroups, Organism = "Human",
Type = "GeneSymbol")
#' set.seed(20150122)
idx.train <- sample(nrow(x), round(nrow(x)*2/3))
x.train <- x[idx.train,]
y.train <- y[idx.train]
x.test <- x[-idx.train,]
y.test <- y[-idx.train]
# fit model
cv.fit1 <- cv.PCLasso2(x = x.train, y = y.train, group = PC.Human,
penalty = "grLasso", family = "binomial", nfolds = 10)
# predict risk scores of samples in x.test
s <- predict(object = cv.fit1, x = x.test, type="link",
lambda=cv.fit1$cv.fit$lambda.min)
# predict classes of samples in x.test
s <- predict(object = cv.fit1, x = x.test, type="class",
lambda=cv.fit1$cv.fit$lambda.min)
# Nonzero coefficients
sel.groups <- predict(object = cv.fit1, type="groups",
lambda = cv.fit1$cv.fit$lambda.min)
sel.ngroups <- predict(object = cv.fit1, type="ngroups",
lambda = cv.fit1$cv.fit$lambda.min)
sel.vars.unique <- predict(object = cv.fit1, type="vars.unique",
lambda = cv.fit1$cv.fit$lambda.min)
sel.nvars.unique <- predict(object = cv.fit1, type="nvars.unique",
lambda = cv.fit1$cv.fit$lambda.min)
sel.vars <- predict(object = cv.fit1, type="vars",
lambda=cv.fit1$cv.fit$lambda.min)
sel.nvars <- predict(object = cv.fit1, type="nvars",
lambda=cv.fit1$cv.fit$lambda.min)
# }
Run the code above in your browser using DataLab