Learn R Programming

PDtoolkit (version 1.2.0)

boots.vld: Bootstrap model validation

Description

boots.vld performs bootstrap model validation. The goal of this procedure is to generate main model performance metrics such as absolute mean square error, root mean square error or area under curve (AUC) based on resampling method.

Usage

boots.vld(model, B = 1000, seed = 1122)

Value

The command boots.vld returns a list of two objects.

The first object (iter), returns iteration performance metrics.

The second object (summary), is the data frame of iterations averages of performance metrics.

Arguments

model

Model in use, an object of class inheriting from "glm".

B

Number of bootstrap samples. Default is set to 1000.

seed

Random seed needed for ensuring the result reproducibility. Default is 1122.

Examples

Run this code
suppressMessages(library(PDtoolkit))
data(loans)
#run stepFWD
res <- stepFWD(start.model = Creditability ~ 1, 
                p.value = 0.05, 
	   coding = "WoE",
	   db = loans)
#check output elements
names(res)
#extract the final model
final.model <- res$model
#print coefficients
summary(final.model)$coefficients
#print head of coded development data
head(res$dev.db)
#calculate AUC
auc.model(predictions = predict(final.model, type = "response", newdata = res$dev.db),
    observed = res$dev.db$Creditability)
boots.vld (model = final.model, B = 10, seed = 1122)

Run the code above in your browser using DataLab