Learn R Programming

PEIP (version 1.7)

cgls: Conjugate gradient Least squares

Description

Conjugate gradient Least squares

Usage

cgls(Gmat, dee, niter)

Arguments

Gmat
input matrix
dee
right hand side
niter
max number of iterations

Value

  • Xmatrix of models
  • rhomisfit norms
  • etamodel norms

Details

Performs niter iterations of the CGLS algorithm on the least squares problem min norm(G*m-d). Gmat should be a sparse matrix.

References

Aster, R.C., C.H. Thurber, and B. Borchers, Parameter Estimation and Inverse Problems, Elsevier Academic Press, Amsterdam, 2005.