cgls: Conjugate gradient Least squares
Description
Conjugate gradient Least squaresUsage
cgls(Gmat, dee, niter)
Arguments
niter
max number of iterations
Value
- Xmatrix of models
- rhomisfit norms
- etamodel norms
Details
Performs niter iterations of the CGLS algorithm on the least
squares problem min norm(G*m-d). Gmat should be a sparse matrix.References
Aster, R.C., C.H. Thurber, and B. Borchers,
Parameter Estimation and Inverse Problems, Elsevier Academic Press, Amsterdam, 2005.