Learn R Programming

PEIP (version 1.7)

irlsl1reg: L1 least squares with sparsity

Description

Solves the system Gm=d using sparsity regularization on Lm. Solves the L1 regularized least squares problem: min norm(G*m-d,2)^2+alpha*norm(L*m,1)

Usage

irlsl1reg(G, d, L, alpha, maxiter = 100, tolx = 1e-04, tolr = 1e-06)

Arguments

G
design matrix
d
right hand side
L
regularization matrix
alpha
regularization parameter
maxiter
Maximum number of IRLS iterations
tolx
Tolerance on successive iterates
tolr
Tolerance below which we consider an element of L*m to be effectively zero

Value

  • mmodel vector

References

Aster, R.C., C.H. Thurber, and B. Borchers, Parameter Estimation and Inverse Problems, Elsevier Academic Press, Amsterdam, 2005.