50% off | Unlimited Data & AI Learning

Last chance! 50% off unlimited learning

Sale ends in


PEtests (version 0.1.0)

meantest.clx: Two-sample high-dimensional mean test (Cai, Liu and Xia, 2014)

Description

This function implements the two-sample \(l_\infty\)-norm-based high-dimensional mean test proposed in Cai, Liu and Xia (2014). Suppose \(\{\mathbf{X}_1, \ldots, \mathbf{X}_{n_1}\}\) are i.i.d. copies of \(\mathbf{X}\), and \(\{\mathbf{Y}_1, \ldots, \mathbf{Y}_{n_2}\}\) are i.i.d. copies of \(\mathbf{Y}\). The test statistic is defined as $$ M_{CLX}=\frac{n_1n_2}{n_1+n_2}\max_{1\leq j\leq p} \frac{(\bar{X_j}-\bar{Y_j})^2} {\frac{1}{n_1+n_2} [\sum_{u=1}^{n_1} (X_{uj}-\bar{X_j})^2+\sum_{v=1}^{n_2} (Y_{vj}-\bar{Y_j})^2] } $$ With some regularity conditions, under the null hypothesis \(H_{0c}: \mathbf{\Sigma}_1 = \mathbf{\Sigma}_2\), the test statistic \(M_{CLX}-2\log p+\log\log p\) converges in distribution to a Gumbel distribution \(G_{mean}(x) = \exp(-\frac{1}{\sqrt{\pi}}\exp(-\frac{x}{2}))\) as \(n_1, n_2, p \rightarrow \infty\). The asymptotic \(p\)-value is obtained by $$p_{CLX} = 1-G_{mean}(M_{CLX}-2\log p+\log\log p).$$

Usage

meantest.clx(dataX,dataY)

Value

stat the value of test statistic

pval the p-value for the test.

Arguments

dataX

an \(n_1\) by \(p\) data matrix

dataY

an \(n_2\) by \(p\) data matrix

References

Cai, T. T., Liu, W., and Xia, Y. (2014). Two-sample test of high dimensional means under dependence. Journal of the Royal Statistical Society: Series B: Statistical Methodology, 76(2):349–372.

Examples

Run this code
n1 = 100; n2 = 100; pp = 500
set.seed(1)
X = matrix(rnorm(n1*pp), nrow=n1, ncol=pp)
Y = matrix(rnorm(n2*pp), nrow=n2, ncol=pp)
meantest.clx(X,Y)

Run the code above in your browser using DataLab