Learn R Programming

PEtests (version 0.1.0)

simultest: Two-sample simultaneous tests on high-dimensional mean vectors and covariance matrices

Description

This function implements six two-sample simultaneous tests on high-dimensional mean vectors and covariance matrices. Let \(\mathbf{X} \in \mathbb{R}^p\) and \(\mathbf{Y} \in \mathbb{R}^p\) be two \(p\)-dimensional populations with mean vectors \((\boldsymbol{\mu}_1, \boldsymbol{\mu}_2)\) and covariance matrices \((\mathbf{\Sigma}_1, \mathbf{\Sigma}_2)\), respectively. The problem of interest is the simultaneous inference on the equality of mean vectors and covariance matrices of the two populations: $$H_0: \boldsymbol{\mu}_1 = \boldsymbol{\mu}_2 \ \text{ and } \ \mathbf{\Sigma}_1 = \mathbf{\Sigma}_2. $$ Suppose \(\{\mathbf{X}_1, \ldots, \mathbf{X}_{n_1}\}\) are i.i.d. copies of \(\mathbf{X}\), and \(\{\mathbf{Y}_1, \ldots, \mathbf{Y}_{n_2}\}\) are i.i.d. copies of \(\mathbf{Y}\). We denote dataX=\((\mathbf{X}_1, \ldots, \mathbf{X}_{n_1})^\top\in\mathbb{R}^{n_1\times p}\) and dataY=\((\mathbf{Y}_1, \ldots, \mathbf{Y}_{n_2})^\top\in\mathbb{R}^{n_2\times p}\).

Usage

simultest(dataX, dataY, method='pe.fisher', delta_mean=NULL, delta_cov=NULL)

Value

method the method type

stat the value of test statistic

pval the p-value for the test.

Arguments

dataX

an \(n_1\) by \(p\) data matrix

dataY

an \(n_2\) by \(p\) data matrix

method

the method type (default = 'pe.fisher'); chosen from

  • 'cauchy': the simultaneous test via Cauchy combination;
    see simultest.cauchy for details.

  • 'chisq': the simultaneous test via chi-squared approximation;
    see simultest.chisq for details.

  • 'fisher': the simultaneous test via Fisher's combination;
    see simultest.fisher for details.

  • 'pe.cauchy': the PE simultaneous test via Cauchy combination;
    see simultest.pe.cauchy for details.

  • 'pe.chisq': the PE simultaneous test via chi-squared approximation;
    see simultest.pe.chisq for details.

  • 'pe.fisher': the PE simultaneous test via Fisher's combination;
    see simultest.pe.fisher for details.

delta_mean

the thresholding value used in the construction of the PE component for the mean test statistic. It is needed only in PE methods such as method='pe.cauchy', method='pe.chisq', and method='pe.fisher'; see simultest.pe.cauchy,
simultest.pe.chisq, and simultest.pe.fisher for details. The default is NULL.

delta_cov

the thresholding value used in the construction of the PE component for the covariance test statistic. It is needed only in PE methods such as method='pe.cauchy', method='pe.chisq', and method='pe.fisher'; see simultest.pe.cauchy,
simultest.pe.chisq, and simultest.pe.fisher for details. The default is NULL.

References

Chen, S. X. and Qin, Y. L. (2010). A two-sample test for high-dimensional data with applications to gene-set testing. Annals of Statistics, 38(2):808–835.

Li, J. and Chen, S. X. (2012). Two sample tests for high-dimensional covariance matrices. The Annals of Statistics, 40(2):908–940.

Yu, X., Li, D., and Xue, L. (2022). Fisher’s combined probability test for high-dimensional covariance matrices. Journal of the American Statistical Association, (in press):1–14.

Yu, X., Li, D., Xue, L., and Li, R. (2022). Power-enhanced simultaneous test of high-dimensional mean vectors and covariance matrices with application to gene-set testing. Journal of the American Statistical Association, (in press):1–14.

Examples

Run this code
n1 = 100; n2 = 100; pp = 500
set.seed(1)
X = matrix(rnorm(n1*pp), nrow=n1, ncol=pp)
Y = matrix(rnorm(n2*pp), nrow=n2, ncol=pp)
simultest(X,Y)

Run the code above in your browser using DataLab