#Uses data set breast from package coxphf.
data(breast)
out<-convertstoml(Surv(breast$TIME,breast$CENS),breast[,c("T","N","G","CD")])
out1<-convertmtol(out[,c("T","N","G","CD")],out[,"chid"],out[,"choice"],
out[,"patients"])
glmout<-glm.fit(out1$xmat,out1$y,family=binomial())
#In many practice examples, the following line shows which observations to retain
#in the logistic regression example.
moderate<-(fitted(glmout)<1-1.0e-8)&(fitted(glmout)>1.0e-8)
# Proportional hazards fit illustrating infinite estimates.
coxph(Surv(TIME,CENS)~ T+ N+ G+ CD,data=breast)
# Wrong analysis naively removing covariate with infinite estimate
coxph(Surv(TIME,CENS)~ T+ N+ CD,data=breast)
summary(glm((CENS>22)~T+N+G+CD,family=binomial,data=breast))
# \donttest{
out2<-reduceLR(out1$xmat,yvec=out1$y,keep="CD")
bestcoxout<-coxph(Surv(TIME,CENS)~ T+ N+ G+ CD,data=breast,
subset=as.numeric(unique(out1$subjects[out2$moderate])))
# }
Run the code above in your browser using DataLab