Learn R Programming

PHInfiniteEstimates (version 2.9.5)

fixcoxph: Remove observations from a proportional hazards regression, and return the fit of the reduced model.

Description

This function implements the approximate conditional inferential approach of kz19;textualPHInfiniteEstimates to proportional hazards regression.

Usage

fixcoxph(randdat, xxx, iv, verbose = FALSE)

Value

Fitted survival analysis regression parameter of class coxph, fitted form data set with observations forcing infinite estimation removed.

Arguments

randdat

A list with at least the component y, representing the Surv() object. I expect that this will be output from an initial non-convergent regression.

xxx

a design matrix for the regression. I expect that this will be the $x component of the output from an initial non-convergent regression, run with x=TRUE .

iv

name of the variable of interest, as a character string

verbose

logical flag governing printing.

References

kz19PHInfiniteEstimates

Examples

Run this code
data(breast) # From library coxphf
bcfit<-coxph(Surv(TIME,CENS)~ T+ N+ G+ CD,data=breast,x=TRUE)
# \donttest{
fixcoxph(bcfit,bcfit$x,"T",Surv(TIME,CENS)~ T+ N+ G+ CD)
# }
testdat2 <- data.frame(Time=c(4,3,1,1,2,2,3),
  Cen=c(1,1,1,0,0,0,0), Primary=c(0,2,1,1,1,0,0), Sex=c(0,0,0,0,1,1,1))
(bcfit<-coxph(Surv(Time,Cen)~Primary + Sex, testdat2, x=TRUE, ties="breslow"))
fixcoxph(bcfit,bcfit$x,"Primary")

Run the code above in your browser using DataLab