Learn R Programming

PHInfiniteEstimates (version 2.9.5)

inference: Perform inference on conditional sample space.

Description

This function performs classical frequentist statistical inference to a discrete multivariate canonical exponential family. It produces the maximum likelihood estimator, one- and two-sided p-values for the test that model parameters are zero, and providing confidence intervals for the parameters. The discrete probability model is given by a set of possible values of the random vectors, and null weights for these vectors. Such a discrete probability model arises in logistic regression, and this function is envisioned to be applied to the results of a network algorithm for conditional logistic regression. Examples apply this to data from mehtapatel;textualPHInfiniteEstimates, citing goorinetal87;textualPHInfiniteEstimates.

Usage

inference(
  netout,
  alpha = 0.05,
  rng = c(-5, 5),
  alternative = c("two.sided", "less", "greater")
)

Value

List of outputs, including

  • ospv Observed one-sided p values

  • tspv Observed two-sided p value.

  • ci confidence interval.

  • estimate Maximum conditional likelihood estimator.

  • null.value Value of parameter under null hypothesis.

  • data.name Name of data set

  • method Method used to generate test.

  • statistic sufficient statistic value for inference variable.

  • p.value p.value

  • conf.int confidence interval.

  • alternative String indicating two- or one-sided alternative, and, if one-sided, direction.

and including standard stats:::orint.htest components, and of class htest.

Arguments

netout

List of the sort provided by network.

alpha

Test level, or 1- confidence level.

rng

Range of possible parameter values.

alternative

String indicating two- or one-sided alternative, and, if one-sided, direction.

References

mehtapatelPHInfiniteEstimates

goorinetal87PHInfiniteEstimates

Examples

Run this code
#Columns in table are:
# Lymphocytic Infiltration (1=low, 0=high)
# Sex (1=male, 0=female)
# Any Ostioid Pathology (1=yes, 0=no)
# Number in LI-Sex-AOP group
# Number in LI-Sex-AOP group with disease free interval greater than 3 y
goorin<-data.frame(LI=c(0,0,0,0,1,1,1,1),Sex=c(0,0,1,1,0,0,1,1),
   AOP=c(0,1,0,1,0,1,0,1),N=c(3,2,4,1,5,5,9,17),Y=c(3,2,4,1,5,3,5,6))
# \donttest{
netout<-network(goorin[,1:3],goorin[,4],conditionon=1:3,resp=goorin[,5])
inference(netout)
# }

Run the code above in your browser using DataLab