Learn R Programming

PKNCA (version 0.11.0)

pk.tss.monoexponential: Compute the time to steady state using nonlinear, mixed-effects modeling of trough concentrations.

Description

Trough concentrations are selected as concentrations at the time of dosing. An exponential curve is then fit through the data with a different magnitude by treatment (as a factor) and a random steady-state concentration and time to stead-state by subject (see random.effects argument).

Usage

pk.tss.monoexponential(
  ...,
  tss.fraction = 0.9,
  output = c("population", "popind", "individual", "single"),
  check = TRUE,
  verbose = FALSE
)

Value

A scalar float for the first time when steady-state is achieved or NA if it is not observed.

Arguments

...

See pk.tss.data.prep()

tss.fraction

The fraction of steady-state required for calling steady-state

output

Which types of outputs should be produced? population is the population estimate for time to steady-state (from an nlme model), popind is the individual estimate (from an nlme model), individual fits each individual separately with a gnls model (requires more than one individual; use single for one individual), and single fits all the data to a single gnls model.

check

See pk.tss.data.prep().

verbose

Describe models as they are run, show convergence of the model (passed to the nlme function), and additional details while running.

References

Maganti, L., Panebianco, D.L. & Maes, A.L. Evaluation of Methods for Estimating Time to Steady State with Examples from Phase 1 Studies. AAPS J 10, 141–147 (2008). https://doi.org/10.1208/s12248-008-9014-y

See Also

Other Time to steady-state calculations: pk.tss(), pk.tss.stepwise.linear()