- graph.data
dataframe of the graph data containing edge list and edge weights.
column 1 and 2 consisting of the edge list (undirected).
column 3 and 4 consisting the edge weights corresponding to each graph, respectively.
- edge.threshold
numeric value to set edge weights below the threshold to zero (default: 0). the greater edge weights do not change.
- train.rep
numeric value to set the number of EDNN training repeats (default: 50).
- embedding.size
the dimension of embedding space, equal to the number of the bottleneck hidden nodes (default: 5).
- epochs
maximum number of pocks. An early stopping callback with a patience of 5 has been set inside the function (default = 10).
- batch.size
batch size for learning (default = 5).
- l2reg
the coefficient of L2 regularization for the input layer (default = 0).
- walk.rep
number of repeats for the random walk (default: 100).
- n.steps
number of the random walk steps (default: 5).
- random.walk
boolean value to enable the random walk algorithm (default: TRUE).
- null.perm
boolean to enable permuting two random graphs and embed them, along with the main two graphs, for the null distribution (default: TRUE).
- demo
a boolean vector to indicate this is a demo example or not
- verbose
if TRUE a progress bar is shown.