Learn R Programming

PLNmodels (version 0.11.7)

predict.PLNmixturefit: Prediction for a PLNmixturefit object

Description

Predict either posterior probabilities for each group or latent positions based on new samples

Usage

# S3 method for PLNmixturefit
predict(
  object,
  newdata,
  type = c("posterior", "response", "position"),
  prior = matrix(rep(1/object$k, object$k), nrow(newdata), object$k, byrow = TRUE),
  control = list(),
  ...
)

Value

A matrix of posterior probabilities for each group (if type = "posterior"), a matrix of (average) position in the latent space (if type = "position") or a vector of predicted groups (if type = "response").

Arguments

object

an R6 object with class PLNmixturefit

newdata

A data frame in which to look for variables, offsets and counts with which to predict.

type

The type of prediction required. The default posterior are posterior probabilities for each group , response is the group with maximal posterior probability and latent is the averaged latent in the latent space, with weights equal to the posterior probabilities.

prior

User-specified prior group probabilities in the new data. The default uses a uniform prior.

control

a list for controlling the optimization. See PLN() for details.

...

additional parameters for S3 compatibility. Not used

Examples

Run this code
data(trichoptera)
trichoptera <- prepare_data(trichoptera$Abundance, trichoptera$Covariate)
myPLN <- PLNmixture(Abundance ~ 1 + offset(log(Offset)),
           data = trichoptera, control_main = list(iterates = 0))  %>% getBestModel()
predict(myPLN, trichoptera, "posterior")
predict(myPLN, trichoptera, "position")
predict(myPLN, trichoptera, "response")

Run the code above in your browser using DataLab