The function PLNLDA
produces an instance of an object with class PLNPLDAfit
.
This class comes with a set of methods, some of them being useful for the user:
See the documentation for the methods inherited by PLNfit
, the
plot.PLNPCAfit
method for LDA vizualization and
predict.PLNPCAfit
method for prediction
PLNmodels::PLNfit
-> PLNLDAfit
var_par
a list with two matrices, M and S, which are the estimated parameters in the variational approximation
optim_par
a list with parameters useful for monitoring the optimization
loglik
variational lower bound of the loglikelihood
BIC
variational lower bound of the BIC
ICL
variational lower bound of the ICL
R_squared
approximated goodness-of-fit criterion
criteria
a vector with loglik, BIC, ICL, R_squared and number of parameters
rank
the dimension of the current model
model_par
a list with the matrices associated with the estimated parameters of the PLN model: Theta (covariates), Sigma (latent covariance), B (latent loadings), P (latent position) and Mu (group means)
var_par
a list with two matrices, M and S, which are the estimated parameters in the variational approximation
optim_par
a list with parameters useful for monitoring the optimization
loglik
variational lower bound of the loglikelihood
BIC
variational lower bound of the BIC
ICL
variational lower bound of the ICL
R_squared
approximated goodness-of-fit criterion
criteria
a vector with loglik, BIC, ICL, R_squared and number of parameters
nb_param
number of parameters in the current PLN model
percent_var
the percent of variance explained by each axis
corr_map
a matrix of correlations to plot the correlation circles
scores
a matrix of scores to plot the individual factor maps
new()
PLNLDAfit$new( grouping, responses, covariates, offsets, weights, model, control )
optimize()
PLNLDAfit$optimize(X, covar, design_group, control)
setVisualization()
PLNLDAfit$setVisualization(scale.unit = FALSE)
postTreatment()
PLNLDAfit$postTreatment(responses, covariates, offsets)
plot_individual_map()
PLNLDAfit$plot_individual_map( axes = 1:min(2, self$rank), main = "Individual Factor Map", plot = TRUE )
plot_correlation_map()
PLNLDAfit$plot_correlation_map( axes = 1:min(2, self$rank), main = "Variable Factor Map", cols = "default", plot = TRUE )
plot_LDA()
PLNLDAfit$plot_LDA( nb_axes = min(3, self$rank), var_cols = "default", plot = TRUE )
predict()
PLNLDAfit$predict( newdata, type = c("posterior", "response", "scores"), scale = c("log", "prob"), prior = NULL, control = list(), envir = parent.frame() )
show()
PLNLDAfit$show()
clone()
The objects of this class are cloneable with this method.
PLNLDAfit$clone(deep = FALSE)
deep
Whether to make a deep clone.
The function PLNLDA
.
# NOT RUN {
data(trichoptera)
trichoptera <- prepare_data(trichoptera$Abundance, trichoptera$Covariate)
myPLNLDA <- PLNLDA(Abundance ~ 1, grouping = Group, data = trichoptera)
class(myPLNLDA)
print(myPLNLDA)
# }
Run the code above in your browser using DataLab