The function PLNLDA produces an instance of an object with class PLNPLDAfit.
This class comes with a set of methods, some of them being useful for the user:
See the documentation for the methods inherited by PLNfit, the
plot.PLNPCAfit method for LDA vizualization and
predict.PLNPCAfit method for prediction
PLNmodels::PLNfit -> PLNLDAfit
var_para list with two matrices, M and S, which are the estimated parameters in the variational approximation
optim_para list with parameters useful for monitoring the optimization
loglikvariational lower bound of the loglikelihood
BICvariational lower bound of the BIC
ICLvariational lower bound of the ICL
R_squaredapproximated goodness-of-fit criterion
criteriaa vector with loglik, BIC, ICL, R_squared and number of parameters
rankthe dimension of the current model
model_para list with the matrices associated with the estimated parameters of the PLN model: Theta (covariates), Sigma (latent covariance), B (latent loadings), P (latent position) and Mu (group means)
var_para list with two matrices, M and S, which are the estimated parameters in the variational approximation
optim_para list with parameters useful for monitoring the optimization
loglikvariational lower bound of the loglikelihood
BICvariational lower bound of the BIC
ICLvariational lower bound of the ICL
R_squaredapproximated goodness-of-fit criterion
criteriaa vector with loglik, BIC, ICL, R_squared and number of parameters
nb_paramnumber of parameters in the current PLN model
percent_varthe percent of variance explained by each axis
corr_mapa matrix of correlations to plot the correlation circles
scoresa matrix of scores to plot the individual factor maps
new()PLNLDAfit$new( grouping, responses, covariates, offsets, weights, model, control )
optimize()PLNLDAfit$optimize(X, covar, design_group, control)
setVisualization()PLNLDAfit$setVisualization(scale.unit = FALSE)
postTreatment()PLNLDAfit$postTreatment(responses, covariates, offsets)
plot_individual_map()PLNLDAfit$plot_individual_map( axes = 1:min(2, self$rank), main = "Individual Factor Map", plot = TRUE )
plot_correlation_map()PLNLDAfit$plot_correlation_map( axes = 1:min(2, self$rank), main = "Variable Factor Map", cols = "default", plot = TRUE )
plot_LDA()PLNLDAfit$plot_LDA( nb_axes = min(3, self$rank), var_cols = "default", plot = TRUE )
predict()PLNLDAfit$predict(
newdata,
type = c("posterior", "response", "scores"),
scale = c("log", "prob"),
prior = NULL,
control = list(),
envir = parent.frame()
)show()PLNLDAfit$show()
clone()The objects of this class are cloneable with this method.
PLNLDAfit$clone(deep = FALSE)
deepWhether to make a deep clone.
The function PLNLDA.
# NOT RUN {
data(trichoptera)
trichoptera <- prepare_data(trichoptera$Abundance, trichoptera$Covariate)
myPLNLDA <- PLNLDA(Abundance ~ 1, grouping = Group, data = trichoptera)
class(myPLNLDA)
print(myPLNLDA)
# }
Run the code above in your browser using DataLab