The function PLN
fit a model which is an instance of a object with class PLNfit
.
Objects produced by the functions PLNnetwork
, PLNPCA
and PLNLDA
also enjoy the method of PLNfit
by inheritance.
This class comes with a set of R6 methods, some of them being useful for the user and exported as S3 methods.
See the documentation for coef
, sigma.PLNfit
,
predict
, vcov
and standard_error
.
Fields are accessed via active binding and cannot be changed by the user.
model
character: the model used for the coavariance (either "spherical", "diagonal" or "full")
model_par
a list with the matrices of parameters found in the model (Theta, Sigma, plus some others depending on the variant)
var_par
a list with two matrices, M and S, which are the estimated parameters in the variational approximation
latent
a matrix: values of the latent vector (Z in the model)
optim_par
a list with parameters useful for monitoring the optimization
model
character: the model used for the coavariance (either "spherical", "diagonal" or "full")
loglik
variational lower bound of the loglikelihood
loglik_vec
element-wise variational lower bound of the loglikelihood
BIC
variational lower bound of the BIC
ICL
variational lower bound of the ICL
R_squared
approximated goodness-of-fit criterion
nb_param
number of parameters in the current PLN model
criteria
a vector with loglik, BIC, ICL, R_squared and number of parameters
update()
PLNfit$update( Theta = NA, Sigma = NA, M = NA, S = NA, Ji = NA, R2 = NA, Z = NA, A = NA, monitoring = NA )
new()
PLNfit$new(responses, covariates, offsets, weights, model, control)
optimize()
PLNfit$optimize(responses, covariates, offsets, weights, control)
set_R2()
PLNfit$set_R2(responses, covariates, offsets, weights, nullModel = NULL)
postTreatment()
PLNfit$postTreatment( responses, covariates, offsets, weights = rep(1, nrow(responses)), type = c("wald", "louis"), nullModel = NULL )
latent_pos()
PLNfit$latent_pos(covariates, offsets)
VEstep()
PLNfit$VEstep(X, O, Y, control = list())
predict()
PLNfit$predict(newdata, type = c("link", "response"), envir = parent.frame())
compute_fisher()
PLNfit$compute_fisher(type = c("wald", "louis"), X = NULL)
compute_standard_error()
PLNfit$compute_standard_error()
show()
PLNfit$show( model = paste("A multivariate Poisson Lognormal fit with", private$covariance, "covariance model.\n") )
print()
PLNfit$print()
clone()
The objects of this class are cloneable with this method.
PLNfit$clone(deep = FALSE)
deep
Whether to make a deep clone.
# NOT RUN {
data(trichoptera)
trichoptera <- prepare_data(trichoptera$Abundance, trichoptera$Covariate)
myPLN <- PLN(Abundance ~ 1, data = trichoptera)
class(myPLN)
print(myPLN)
# }
Run the code above in your browser using DataLab