Learn R Programming

PLNmodels (version 0.9.5)

plot.PLNPCAfit: PCA vizualiation (individual and/or variable factor map(s)) for a PLNPCAfit object

Description

PCA vizualiation (individual and/or variable factor map(s)) for a PLNPCAfit object

Usage

# S3 method for PLNPCAfit
plot(
  x,
  map = c("both", "individual", "variable"),
  nb_axes = min(3, x$rank),
  axes = seq.int(min(2, x$rank)),
  ind_cols = "ind_colors",
  var_cols = "var_colors",
  plot = TRUE,
  main = NULL,
  ...
)

Arguments

x

an R6 object with class PLNPCAfit

map

the type of output for the PCA vizualization: either "individual", "variable" or "both". Default is "both".

nb_axes

scalar: the number of axes to be considered when map = "both". The default is min(3,rank).

axes

numeric, the axes to use for the plot when map = "individual" or "variable". Default it c(1,min(rank))

ind_cols

a character, factor or numeric to define the color associated with the individuals. By default, all variables receive the default color of the current palette.

var_cols

a character, factor or numeric to define the color associated with the variables. By default, all variables receive the default color of the current palette.

plot

logical. Should the plot be displayed or sent back as ggplot object

main

character. A title for the single plot (individual or variable factor map). If NULL (the default), an hopefully appropriate title will be used.

...

Not used (S3 compatibility).

Value

displays an individual and/or variable factor maps for the corresponding axes, and/or sends back a ggplot2 or gtable object

Examples

Run this code
# NOT RUN {
data(trichoptera)
trichoptera <- prepare_data(trichoptera$Abundance, trichoptera$Covariate)
myPCAs <- PLNPCA(Abundance ~ 1 + offset(log(Offset)), data = trichoptera, ranks = 1:5)
myPCA <- getBestModel(myPCAs)
# }
# NOT RUN {
plot(myPCA, map = "individual", nb_axes=2, ind_cols = trichoptera$Group)
plot(myPCA, map = "variable", nb_axes=2)
plot(myPCA, map = "both", nb_axes=2, ind_cols = trichoptera$Group)
# }

Run the code above in your browser using DataLab