50% off | Unlimited Data & AI Learning
Get 50% off unlimited learning

⚠️There's a newer version (1.2.2) of this package.Take me there.

PLNmodels (version 1.2.1)

Poisson Lognormal Models

Description

The Poisson-lognormal model and variants (Chiquet, Mariadassou and Robin, 2021 ) can be used for a variety of multivariate problems when count data are at play, including principal component analysis for count data, discriminant analysis, model-based clustering and network inference. Implements variational algorithms to fit such models accompanied with a set of functions for visualization and diagnostic.

Copy Link

Version

Install

install.packages('PLNmodels')

Monthly Downloads

355

Version

1.2.1

License

GPL (>= 3)

Maintainer

Julien Chiquet

Last Published

March 10th, 2025

Functions in PLNmodels (1.2.1)

Networkfamily

An R6 Class to virtually represent a collection of network fits
PLNPCA

Poisson lognormal model towards Principal Component Analysis
PLNPCA_param

Control of PLNPCA fit
PLN

Poisson lognormal model
PLNLDA

Poisson lognormal model towards Linear Discriminant Analysis
PLNLDAfit

An R6 Class to represent a PLNfit in a LDA framework
PLNPCAfamily

An R6 Class to represent a collection of PLNPCAfit
PLNLDA_param

Control of a PLNLDA fit
PLNLDAfit_diagonal

An R6 Class to represent a PLNfit in a LDA framework with diagonal covariance
PLNPCAfit

An R6 Class to represent a PLNfit in a PCA framework
PLN_param

Control of a PLN fit
PLNfamily

An R6 Class to represent a collection of PLNfit
PLNfit_fixedcov

An R6 Class to represent a PLNfit in a standard, general framework, with fixed (inverse) residual covariance
PLNfit

An R6 Class to represent a PLNfit in a standard, general framework
PLNmixture

Poisson lognormal mixture model
PLNfit_diagonal

An R6 Class to represent a PLNfit in a standard, general framework, with diagonal residual covariance
PLNmixturefamily

An R6 Class to represent a collection of PLNmixturefit
PLNmixture_param

Control of a PLNmixture fit
PLNfit_spherical

An R6 Class to represent a PLNfit in a standard, general framework, with spherical residual covariance
PLNmodels-package

PLNmodels: Poisson Lognormal Models
ZIPLN_param

Control of a ZIPLN fit
PLNmixturefit

An R6 Class to represent a PLNfit in a mixture framework
PLNnetwork_param

Control of PLNnetwork fit
ZIPLNfit_diagonal

An R6 Class to represent a ZIPLNfit in a standard, general framework, with diagonal residual covariance
PLNnetwork

Sparse Poisson lognormal model for network inference
coef.PLNmixturefit

Extract model coefficients
coef.ZIPLNfit

Extract model coefficients
ZIPLNfit_fixed

An R6 Class to represent a ZIPLNfit in a standard, general framework, with fixed (inverse) residual covariance
getModel.PLNPCAfamily

Model extraction from a collection of models
ZIPLNfit

An R6 Class to represent a ZIPLNfit
ZIPLNnetwork

Zero Inflated Sparse Poisson lognormal model for network inference
coef.PLNLDAfit

Extracts model coefficients from objects returned by PLNLDA()
PLNnetworkfit

An R6 Class to represent a PLNfit in a sparse inverse covariance framework
ZIPLN

Zero Inflated Poisson lognormal model
mollusk

Mollusk data set
plot.Networkfamily

Display various outputs (goodness-of-fit criteria, robustness, diagnostic) associated with a collection of network fits (either PLNnetworkfamily or ZIPLNnetworkfamily)
ZIPLNnetworkfamily

An R6 Class to represent a collection of ZIPLNnetwork
plot.PLNLDAfit

LDA visualization (individual and/or variable factor map(s)) for a PLNPCAfit object
oaks

Oaks amplicon data set
scRNA

Single cell RNA-seq data
sigma.PLNfit

Extract variance-covariance of residuals 'Sigma'
ZIPLNnetwork_param

Control of ZIPLNnetwork fit
barents

Barents fish data set
coef.PLNfit

Extract model coefficients
compute_offset

Compute offsets from a count data using one of several normalization schemes
coefficient_path

Extract the regularization path of a PLNnetwork fit
fitted.ZIPLNfit

Extracts model fitted values from objects returned by ZIPLN() and its variants
getBestModel.PLNPCAfamily

Best model extraction from a collection of models
plot.PLNmixturefit

Mixture visualization of a PLNmixturefit object
%>%

Pipe operator
plot.PLNnetworkfit

Extract and plot the network (partial correlation, support or inverse covariance) from a PLNnetworkfit object
predict.PLNfit

Predict counts of a new sample
extract_probs

Extract edge selection frequency in bootstrap subsamples
sigma.PLNmixturefit

Extract variance-covariance of residuals 'Sigma'
plot.PLNPCAfamily

Display the criteria associated with a collection of PLNPCA fits (a PLNPCAfamily)
compute_PLN_starting_point

Helper function for PLN initialization.
predict.ZIPLNfit

Predict counts of a new sample
sigma.ZIPLNfit

Extract variance-covariance of residuals 'Sigma'
plot.PLNPCAfit

PCA visualization (individual and/or variable factor map(s)) for a PLNPCAfit object
stability_selection

Compute the stability path by stability selection
predict.PLNmixturefit

Prediction for a PLNmixturefit object
PLNnetworkfamily

An R6 Class to represent a collection of PLNnetworkfits
ZIPLNfit_spherical

An R6 Class to represent a ZIPLNfit in a standard, general framework, with spherical residual covariance
ZIPLNfit_sparse

An R6 Class to represent a ZIPLNfit in a standard, general framework, with sparse inverse residual covariance
standard_error.PLNPCAfit

Component-wise standard errors of B
predict_cond

Predict counts conditionally
fitted.PLNfit

Extracts model fitted values from objects returned by PLN() and its variants
fitted.PLNmixturefit

Extracts model fitted values from objects returned by PLNmixture() and its variants
prepare_data

Prepare data for use in PLN models
rPLN

PLN RNG
plot.PLNfamily

Display the criteria associated with a collection of PLN fits (a PLNfamily)
plot.PLNmixturefamily

Display the criteria associated with a collection of PLNmixture fits (a PLNmixturefamily)
plot.ZIPLNfit_sparse

Extract and plot the network (partial correlation, support or inverse covariance) from a ZIPLNfit_sparse object
predict.PLNLDAfit

Predict group of new samples
trichoptera

Trichoptera data set
vcov.PLNfit

Calculate Variance-Covariance Matrix for a fitted PLN() model object