The function ZIPLNnetwork() produces an instance of this class.
This class comes with a set of methods, some of them being useful for the user:
See the documentation for getBestModel(),
getModel() and plot()
PLNmodels::PLNfamily -> PLNmodels::Networkfamily -> ZIPLNnetworkfamily
covariates0the matrix of covariates included in the ZI component
Inherited methods
PLNmodels::PLNfamily$getModel()PLNmodels::PLNfamily$postTreatment()PLNmodels::PLNfamily$print()PLNmodels::Networkfamily$coefficient_path()PLNmodels::Networkfamily$getBestModel()PLNmodels::Networkfamily$optimize()PLNmodels::Networkfamily$plot()PLNmodels::Networkfamily$plot_objective()PLNmodels::Networkfamily$plot_stars()PLNmodels::Networkfamily$show()
new()Initialize all models in the collection
ZIPLNnetworkfamily$new(penalties, data, control)penaltiesa vector of positive real number controlling the level of sparsity of the underlying network.
dataa named list used internally to carry the data matrices
controla list for controlling the optimization.
Update current PLNnetworkfit with smart starting values
stability_selection()Compute the stability path by stability selection
ZIPLNnetworkfamily$stability_selection(
subsamples = NULL,
control = ZIPLNnetwork_param()
)subsamplesa list of vectors describing the subsamples. The number of vectors (or list length) determines the number of subsamples used in the stability selection. Automatically set to 20 subsamples with size 10*sqrt(n) if n >= 144 and 0.8*n otherwise following Liu et al. (2010) recommendations.
controla list controlling the main optimization process in each call to PLNnetwork(). See ZIPLNnetwork() and ZIPLN_param() for details.
clone()The objects of this class are cloneable with this method.
ZIPLNnetworkfamily$clone(deep = FALSE)deepWhether to make a deep clone.
The function ZIPLNnetwork(), the class ZIPLNfit_sparse
data(trichoptera)
trichoptera <- prepare_data(trichoptera$Abundance, trichoptera$Covariate)
fits <- PLNnetwork(Abundance ~ 1, data = trichoptera)
class(fits)
Run the code above in your browser using DataLab