# EXAMPLE 1: REAL DATA
data(barnacles1)
data <- as.matrix(barnacles1)
data <- diff(data, 12)
data <- cbind(data,1:nrow(data))
data(barnacles2)
data2 <- as.matrix(barnacles2)
data2 <- diff(data2, 12)
data2 <- cbind(data2,1:nrow(data2))
data3 <- array(0, c(nrow(data),ncol(data)-1,2))
data3[,,1] <- data[,-4]
data3[,,2] <- data2[,-4]
t <- data[,4]
plrm.ancova(data=data3, t=t)
# EXAMPLE 2: SIMULATED DATA
## Example 2a: dependent data - true null hypotheses
set.seed(1234)
# We generate the data
n <- 100
t <- ((1:n)-0.5)/n
beta <- c(0.05, 0.01)
m1 <- function(t) {0.25*t*(1-t)}
f <- m1(t)
x1 <- matrix(rnorm(200,0,1), nrow=n)
sum1 <- x1%*%beta
epsilon1 <- arima.sim(list(order = c(1,0,0), ar=0.7), sd = 0.01, n = n)
y1 <- sum1 + f + epsilon1
data1 <- cbind(y1,x1)
x2 <- matrix(rnorm(200,1,2), nrow=n)
sum2 <- x2%*%beta
epsilon2 <- arima.sim(list(order = c(0,0,1), ma=0.5), sd = 0.02, n = n)
y2 <- sum2 + f + epsilon2
data2 <- cbind(y2,x2)
data_eq <- array(c(data1,data2), c(n,3,2))
# We apply the tests
plrm.ancova(data=data_eq, t=t, time.series=TRUE)
## Example 2b: dependent data - false null hypotheses
set.seed(1234)
# We generate the data
n <- 100
t <- ((1:n)-0.5)/n
m3 <- function(t) {0.25*t*(1-t)}
m4 <- function(t) {0.25*t*(1-t)*0.75}
beta3 <- c(0.05, 0.01)
beta4 <- c(0.05, 0.02)
x3 <- matrix(rnorm(200,0,1), nrow=n)
sum3 <- x3%*%beta3
f3 <- m3(t)
epsilon3 <- arima.sim(list(order = c(1,0,0), ar=0.7), sd = 0.01, n = n)
y3 <- sum3 + f3 + epsilon3
data3 <- cbind(y3,x3)
x4 <- matrix(rnorm(200,1,2), nrow=n)
sum4 <- x4%*%beta4
f4 <- m4(t)
epsilon4 <- arima.sim(list(order = c(0,0,1), ma=0.5), sd = 0.02, n = n)
y4 <- sum4 + f4 + epsilon4
data4 <- cbind(y4,x4)
data_neq <- array(c(data3,data4), c(n,3,2))
# We apply the tests
plrm.ancova(data=data_neq, t=t, time.series=TRUE)
Run the code above in your browser using DataLab