# EXAMPLE 1 (INTERFACE=FORMULA)
# To select the regularization parameters based on AIC.
n = 50
sigma = 0.1
alpha = matrix(1,2,1)
alpha = alpha/norm(alpha,"2")
beta = matrix(4,1,1)
x = matrix(1,n,1)
z = matrix(runif(n*2),n,2)
y = 4*((z%*%alpha-1/sqrt(2))^2) + x%*%beta + sigma*matrix(rnorm(n),n,1)
fit_plsimest = plsim.est(y~x|z)
# Select the regularization parameters by AIC
res = plsim.lam(y~x|z,h=fit_plsimest$data$h,zetaini = fit_plsimest$zeta,
lambda_selector='AIC')
# EXAMPLE 2 (INTERFACE=DATA FRAME)
# To select the regularization parameters based on AIC.
n = 50
sigma = 0.1
alpha = matrix(1,2,1)
alpha = alpha/norm(alpha,"2")
beta = matrix(4,1,1)
x = rep(1,n)
z1 = runif(n)
z2 = runif(n)
X = data.frame(x)
Z = data.frame(z1,z2)
x = data.matrix(X)
z = data.matrix(Z)
y = 4*((z%*%alpha-1/sqrt(2))^2) + x%*%beta + sigma*matrix(rnorm(n),n,1)
fit_plsimest = plsim.est(xdat=X,zdat=Z,ydat=y)
# Select the regularization parameters by AIC
res2 = plsim.lam(xdat=X,ydat=y,zdat=Z,h=fit_plsimest$data$h,
zetaini = fit_plsimest$zeta, lambda_selector='AIC')
Run the code above in your browser using DataLab