n = 50
sigma = 0.1
alpha = matrix(1,2,1)
alpha = alpha/norm(alpha,"2")
beta = matrix(4,1,1)
x = matrix(1,n,1)
z = matrix(runif(n*2),n,2)
y = 4*((z%*%alpha-1/sqrt(2))^2) + x%*%beta + sigma*matrix(rnorm(n),n,1)
# Obtain parameters in PLSiM using Profile Least Squares Estimator
fit_plsimest = plsim.est(x, z, y)
res_npTest_plsimest = plsim.npTest(fit_plsimest)
# Obtain parameters in PLSiM using Penalized Profile Least Squares Estimator
# with lambda set as 0.01
fit_plsim = plsim.vs.soft(x,z,y,lambda = 0.01)
res_npTest_plsim = plsim.npTest(fit_plsim)
Run the code above in your browser using DataLab