posthoc.vanWaerden.test(x, ...)## S3 method for class 'default':
posthoc.vanWaerden.test( x, g, p.adjust.method =
p.adjust.methods, \dots)
## S3 method for class 'formula':
posthoc.vanWaerden.test(formula, data, subset,
na.action, p.adjust.method = p.adjust.methods, \dots)
x
. Ignored if x
is a
list.response ~ group
where
response
gives the data values and group
a vector or
factor of the corresponding groups.model.frame
) containing the variables in the
formula formula
. By default the variables are taken from
environment(formul
NA
s. Defaults to
getOption("na.action")
.p.adjust
)."PMCMR"
vanWaerden.test
using normal scores can be
employed. Provided that significant differences were detected by this
global test, one may be interested in applying post-hoc tests according
to van der Waerden for pairwise multiple comparisons of the group levels.First, the data are ranked according to Kruskal-Wallis. Second, the ranks are transformed to normal scores. The group means of normal scores and the total variance is used to calculate quantiles of the student-t-distribution and consequent p-values.
See vignette("PMCMR")
for details.
kruskal.test
,
vanWaerden.test
,
posthoc.kruskal.nemenyi.test
,
posthoc.kruskal.dunn.test
,
TDist
,
p.adjust
##
require(stats)
data(InsectSprays)
attach(InsectSprays)
vanWaerden.test(count, spray)
posthoc.vanWaerden.test(count, spray, "bonferroni")
detach(InsectSprays)
rm(InsectSprays)
Run the code above in your browser using DataLab