Returns a vector of pvalues that includes the names of the pairwise
groups (i.e. the null hypothesis). The output can be used by
multcompLetters
to find homogeneous groups.
get.pvalues(object, …)
either an object of class "PMCMR"
, usually, a result of a
call to any of the posthoc-tests included in the package PMCMR. Or
an object of class "pairwise.htest"
, a result of a call to
pairwise.prop.test
,
pairwise.t.test
or
pairwise.wilcox.test
.
further arguments, currently ignored.
a named vector with p-values
multcompLetters
,
xtable
,
pairwise.prop.test
,
pairwise.t.test
,
pairwise.wilcox.test
# NOT RUN {
data(InsectSprays)
attach(InsectSprays)
out <- posthoc.kruskal.dunn.test(count ~ spray, p.adjust="bonf")
out.p <- get.pvalues(out)
out.p
### a barplot, significant level at p < 0.05
require(multcompView)
out.mcV <- multcompLetters(out.p, threshold=0.05)
Rij <- rank(count)
Rj.mean <- tapply(Rij, spray, mean)
ti <- paste(out$method, "\nP-adjustment method:", out$p.adjust.method)
xx <- barplot(Rj.mean, ylim=c(0, 1.2* max(Rj.mean)),
xlab="Spray", ylab="Mean rank", main=ti)
yy <- Rj.mean + 3
text(xx, yy, lab=out.mcV$Letters)
## table format
dat <- data.frame(Group = names(Rj.mean),
meanRj = Rj.mean,
M = out.mcV$Letters)
dat
## LaTeX table
require(xtable)
xtable(dat, caption=ti, digits=1)
detach(InsectSprays)
# }
Run the code above in your browser using DataLab