Performs Nemenyi's non-parametric all-pairs comparison test for Kruskal-type ranked data.
kwAllPairsNemenyiTest(x, ...)# S3 method for default
kwAllPairsNemenyiTest(x, g, dist = c("Tukey", "Chisquare"), ...)
# S3 method for formula
kwAllPairsNemenyiTest(
formula,
data,
subset,
na.action,
dist = c("Tukey", "Chisquare"),
...
)
a numeric vector of data values, or a list of numeric data vectors.
further arguments to be passed to or from methods.
a vector or factor object giving the group for the
corresponding elements of "x"
.
Ignored with a warning if "x"
is a list.
the distribution for determining the p-value.
Defaults to "Tukey"
.
a formula of the form response ~ group
where
response
gives the data values and group
a vector or
factor of the corresponding groups.
an optional matrix or data frame (or similar: see
model.frame
) containing the variables in the
formula formula
. By default the variables are taken from
environment(formula)
.
an optional vector specifying a subset of observations to be used.
a function which indicates what should happen when
the data contain NA
s. Defaults to getOption("na.action")
.
A list with class "PMCMR"
containing the following components:
a character string indicating what type of test was performed.
a character string giving the name(s) of the data.
lower-triangle matrix of the estimated quantiles of the pairwise test statistics.
lower-triangle matrix of the p-values for the pairwise tests.
a character string describing the alternative hypothesis.
a character string describing the method for p-value adjustment.
a data frame of the input data.
a string that denotes the test distribution.
For all-pairs comparisons in an one-factorial layout
with non-normally distributed residuals Nemenyi's non-parametric test
can be performed. A total of
If dist == "Tukey"
is selected, the p-values are computed
from the studentized range distribution. If dist == "Chisquare"
is selected, the p-values are computed from the chi-square distribution.
Nemenyi, P. (1963) Distribution-free Multiple Comparisons. Ph.D. thesis, Princeton University.
Sachs, L. (1997) Angewandte Statistik. Berlin: Springer.
Wilcoxon, F., Wilcox, R. A. (1964) Some rapid approximate statistical procedures. Pearl River: Lederle Laboratories.
Tukey
, Chisquare
,
p.adjust
, kruskalTest
,
kwAllPairsDunnTest
, kwAllPairsConoverTest
# NOT RUN {
## Data set InsectSprays
## Global test
kruskalTest(count ~ spray, data = InsectSprays)
## Conover's all-pairs comparison test
## single-step means Tukey's p-adjustment
ans <- kwAllPairsConoverTest(count ~ spray, data = InsectSprays,
p.adjust.method = "single-step")
summary(ans)
## Dunn's all-pairs comparison test
ans <- kwAllPairsDunnTest(count ~ spray, data = InsectSprays,
p.adjust.method = "bonferroni")
summary(ans)
## Nemenyi's all-pairs comparison test
ans <- kwAllPairsNemenyiTest(count ~ spray, data = InsectSprays)
summary(ans)
# }
Run the code above in your browser using DataLab