Last chance! 50% off unlimited learning
Sale ends in
Performs a Kruskal-Wallis rank sum test.
kruskalTest(x, ...)# S3 method for default
kruskalTest(x, g, dist = c("Chisquare", "KruskalWallis", "FDist"), ...)
# S3 method for formula
kruskalTest(
formula,
data,
subset,
na.action,
dist = c("Chisquare", "KruskalWallis", "FDist"),
...
)
A list with class "htest"
containing the following components:
a character string indicating what type of test was performed.
a character string giving the name(s) of the data.
the estimated quantile of the test statistic.
the p-value for the test.
the parameters of the test statistic, if any.
a character string describing the alternative hypothesis.
the estimates, if any.
the estimate under the null hypothesis, if any.
a numeric vector of data values, or a list of numeric data vectors.
further arguments to be passed to or from methods.
a vector or factor object giving the group for the
corresponding elements of "x"
.
Ignored with a warning if "x"
is a list.
the test distribution. Defaults's to "Chisquare"
.
a formula of the form response ~ group
where
response
gives the data values and group
a vector or
factor of the corresponding groups.
an optional matrix or data frame (or similar: see
model.frame
) containing the variables in the
formula formula
. By default the variables are taken from
environment(formula)
.
an optional vector specifying a subset of observations to be used.
a function which indicates what should happen when
the data contain NA
s. Defaults to getOption("na.action")
.
For one-factorial designs with non-normally distributed
residuals the Kruskal-Wallis rank sum test can be performed to test
the H
Let
with the mean rank of the
the expected value
and the expected variance as
In case of ties the statistic
According to Conover and Imam (1981), the statistic
The function provides three different dist
for
Conover, W.J., Iman, R.L. (1981) Rank Transformations as a Bridge Between Parametric and Nonparametric Statistics. Am Stat 35, 124--129.
Kruskal, W.H., Wallis, W.A. (1952) Use of Ranks in One-Criterion Variance Analysis. J Am Stat Assoc 47, 583--621.
Sachs, L. (1997) Angewandte Statistik. Berlin: Springer.
kruskal.test
, pKruskalWallis
,
Chisquare
, FDist
## Hollander & Wolfe (1973), 116.
## Mucociliary efficiency from the rate of removal of dust in normal
## subjects, subjects with obstructive airway disease, and subjects
## with asbestosis.
x <- c(2.9, 3.0, 2.5, 2.6, 3.2) # normal subjects
y <- c(3.8, 2.7, 4.0, 2.4) # with obstructive airway disease
z <- c(2.8, 3.4, 3.7, 2.2, 2.0) # with asbestosis
g <- factor(x = c(rep(1, length(x)),
rep(2, length(y)),
rep(3, length(z))),
labels = c("ns", "oad", "a"))
dat <- data.frame(
g = g,
x = c(x, y, z))
## AD-Test
adKSampleTest(x ~ g, data = dat)
## BWS-Test
bwsKSampleTest(x ~ g, data = dat)
## Kruskal-Test
## Using incomplete beta approximation
kruskalTest(x ~ g, dat, dist="KruskalWallis")
## Using chisquare distribution
kruskalTest(x ~ g, dat, dist="Chisquare")
if (FALSE) {
## Check with kruskal.test from R stats
kruskal.test(x ~ g, dat)
}
## Using Conover's F
kruskalTest(x ~ g, dat, dist="FDist")
if (FALSE) {
## Check with aov on ranks
anova(aov(rank(x) ~ g, dat))
## Check with oneway.test
oneway.test(rank(x) ~ g, dat, var.equal = TRUE)
}
Run the code above in your browser using DataLab