50% off: Unlimited data and AI learning.
State of Data and AI Literacy Report 2025

PMCMRplus (version 1.9.12)

uryWigginsHochbergTest: Ury, Wiggins, Hochberg Test

Description

Performs Ury-Wiggins and Hochberg's all-pairs comparison test for normally distributed data with unequal variances.

Usage

uryWigginsHochbergTest(x, ...)

# S3 method for default uryWigginsHochbergTest(x, g, p.adjust.method = p.adjust.methods, ...)

# S3 method for formula uryWigginsHochbergTest( formula, data, subset, na.action, p.adjust.method = p.adjust.methods, ... )

# S3 method for aov uryWigginsHochbergTest(x, p.adjust.method = p.adjust.methods, ...)

Value

A list with class "PMCMR" containing the following components:

method

a character string indicating what type of test was performed.

data.name

a character string giving the name(s) of the data.

statistic

lower-triangle matrix of the estimated quantiles of the pairwise test statistics.

p.value

lower-triangle matrix of the p-values for the pairwise tests.

alternative

a character string describing the alternative hypothesis.

p.adjust.method

a character string describing the method for p-value adjustment.

model

a data frame of the input data.

dist

a string that denotes the test distribution.

Arguments

x

a numeric vector of data values, a list of numeric data vectors or a fitted model object, usually an aov fit.

...

further arguments to be passed to or from methods.

g

a vector or factor object giving the group for the corresponding elements of "x". Ignored with a warning if "x" is a list.

p.adjust.method

method for adjusting p values (see p.adjust).

formula

a formula of the form response ~ group where response gives the data values and group a vector or factor of the corresponding groups.

data

an optional matrix or data frame (or similar: see model.frame) containing the variables in the formula formula. By default the variables are taken from environment(formula).

subset

an optional vector specifying a subset of observations to be used.

na.action

a function which indicates what should happen when the data contain NAs. Defaults to getOption("na.action").

Details

For all-pairs comparisons in an one-factorial layout with normally distributed residuals but unequal groups variances the tests of Ury-Wiggins and Hochberg can be performed. Let Xij denote a continuous random variable with the j-the realization (1jni) in the i-th group (1ik). Furthermore, the total sample size is N=i=1kni. A total of m=k(k1)/2 hypotheses can be tested: The null hypothesis is Hij:μi=μj  (ij) is tested against the alternative Aij:μiμj (two-tailed). Ury-Wiggins and Hochberg all-pairs test statistics are given by

tijX¯iXj¯(sj2/nj+si2/ni)1/2,  (ij)

with si2 the variance of the i-th group. The null hypothesis is rejected (two-tailed) if

Pr{|tij|tvijα/2|H}ij=α,

with Welch's approximate equation for degree of freedom as

vij=(si2/ni+sj2/nj)2si4/ni2(ni1)+sj4/nj2(nj1).

The p-values are computed from the TDist-distribution. The type of test depends on the selected p-value adjustment method (see also p.adjust):

bonferroni

the Ury-Wiggins test is performed with Bonferroni adjusted p-values.

hochberg

the Hochberg test is performed with Hochberg's adjusted p-values

.

References

Hochberg, Y. (1976) A Modification of the T-Method of Multiple Comparisons for a One-Way Layout With Unequal Variances, Journal of the American Statistical Association 71, 200--203.

Ury, H. and Wiggins, A. D. (1971) Large Sample and Other Multiple Comparisons Among Means, British Journal of Mathematical and Statistical Psychology 24, 174--194.

See Also

dunnettT3Test tamhaneT2Test TDist

Examples

Run this code
fit <- aov(weight ~ feed, chickwts)
shapiro.test(residuals(fit))
bartlett.test(weight ~ feed, chickwts) # var1 = varN
anova(fit)

## also works with fitted objects of class aov
res <- uryWigginsHochbergTest(fit)
summary(res)
summaryGroup(res)

Run the code above in your browser using DataLab