Penalized Multi-Band Learning for Circadian Rhythm Analysis
Using Actigraphy
Description
Penalized Multi-Band Learning algorithm can be effectively implemented for circadian rhythm analysis and daily activity pattern characterization using actigraphy (continuously measured objective physical activity data). Functions for interactive visualization of actigraph data are also included. Method reference: Li, X., Kane, M., Zhang, Y., Sun, W., Song, Y., Dong, S., Lin, Q., Zhu, Q., Jiang, F., Zhao, H. (2019) A Novel Penalized Multi-band Learning Approach Characterizes the Consolidation of Sleep-Wake Circadian Rhythms During Early Childhood Development.