optim_est
function for gradient descent for obtaining estimator
optim_est(
X_lab,
X_unlab,
Y_lab,
Yhat_lab,
Yhat_unlab,
w,
theta,
quant = NA,
method,
step_size = 0.1,
max_iterations = 500,
convergence_threshold = 1e-06
)
estimator
Array or DataFrame containing observed covariates in labeled data.
Array or DataFrame containing observed or predicted covariates in unlabeled data.
Array or DataFrame of observed outcomes in labeled data.
Array or DataFrame of predicted outcomes in labeled data.
Array or DataFrame of predicted outcomes in unlabeled data.
weights vector POP-Inf linear regression (d-dimensional, where d equals the number of covariates).
parameter theta
quantile for quantile estimation
indicates the method to be used for M-estimation. Options include "mean", "quantile", "ols", "logistic", and "poisson".
step size for gradient descent
maximum of iterations for gradient descent
convergence threshold for gradient descent