Learn R Programming

PPCI (version 0.1.5)

Projection Pursuit for Cluster Identification

Description

Implements recently developed projection pursuit algorithms for finding optimal linear cluster separators. The clustering algorithms use optimal hyperplane separators based on minimum density, Pavlidis et. al (2016) ; minimum normalised cut, Hofmeyr (2017) ; and maximum variance ratio clusterability, Hofmeyr and Pavlidis (2015) .

Copy Link

Version

Install

install.packages('PPCI')

Monthly Downloads

220

Version

0.1.5

License

GPL-3

Maintainer

David Hofmeyr

Last Published

March 6th, 2020

Functions in PPCI (0.1.5)

dermatology

Eryhemato-Squamous Disease Identification
breastcancer

Discrimination of Cancerous and Non-Cancerous Breast Masses
dkde

Gradient of the Penalised Density at a Point
add_subtree

Add Nodes To a Plot of a Hierarchical Clustering Model
mch

Maximum Clusteriability Hyperplane
mc_b

Location of Optimal Variance Ratio Hyperplane
mcdr

Maximum Clusterability Dimension Reduction
PPCI-package

PPCI
hp_plot

Visualise a Hyperplane Separator for Clustering
cluster_performance

External Cluster Validity Metrics
mcpp

Maximum Clusterability Projection Pursuit
ncut_b

Location of Minimum Normalised Cut Hyperplane
f_md

Integrated Density on a Hyperplane
md_b

Location of Minimum Density Hyperplane
mdpp

Minimum Density Projection Pursuit
f_ncut

Normalised Cut Across a Hyperplane
ncutdc

Divisive Clustering Using Minimum Normalised Cut Hyperplanes
ncutdr

Minimum Normalised Cut Dimension Reduction
mcdc

Divisive Clustering Using Maximum Clusterability
pendigits

Pen-based Recognition of Handwritten Digits
mdh

Minimum Density Hyperplane
plot.ppci_cluster_solution

Visualise a Hierarchical Clustering Model, or a Node Within a Hierarchical Clustering Model
yale

Face Recognition
md_reldepth

Relative Depth of a Hyperplane
is_minim

Check if the Current Solution is a Valid Minimum Density Hyperplane
mddr

Minimum Density Dimension Reduction
optidigits

Optical Recognition of Handwritten Digits
optidigits_mean_images

Visualise Cluster Means from optidigits data set
ppclust.optim

Optimisation Call for Projection Pursuit Algorithms
ncuth

Minimum Normalised Cut Hyperplane
subtree_width

Determine the Largest Number of Nodes at Any Depth in a Clustering Hierarchy
tree_prune

Prune a Hierarchical Clustering Model
plot.ppci_hyperplane_solution

Visualise a Hyperplane Separator for Clustering
mddc

Divisive Clustering Using Minimum Density Hyperplanes
tree_split

Split a Leaf in a Hierarchical Clustering Model
ncutpp

Minimum Normalised Cut Projection Pursuit
node_plot

Visualise a Node in a Hierarchical Clustering Model
norm_vec

Euclidean Norm of a Vector
success_ratio

Evaluate External Valifity os a Binary Partition
plot.ppci_projection_solution

Visualise a Data Set Projected from Projection Pursuit
tree_plot

Visualise a Hierarchical Clustering Model
df_ncut

Gradient of the Normalised Cut Across a Hyperplane
f_mc

Variance Ratio Clusterability Across a Hyperplane
df_md

Gradient of the Integrated Density on a Hyperplane
df_mc

Gradient of the Variance Ratio Clusterability Across a Hyperplane